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1 Abstract
The integration of dispersion interactions in atomic machine learning (ML) models has been a challenging
topic. People have used methods such as baselining[1] and local parametrization[2] to approximate explicitly
the dispersion behavior at long distances. The long-distance equivariant (LODE) framework[3] was recently
proposed as a data-driven ML method to learn the long-range interactions in atomic systems, but more
examinations of the capability of this method are yet to be performed, especially how well it can capture the
long-range interactions from a general data set. In this project, we will study and compare three different
types of ML models, namely a pure short-range model using SOAP (Smooth Overlap of Atomic Positions)[4]
features, a short-range model using SOAP features combined with an explicit r−6 (R6) model, a multiscale
model using combined features of SOAP and LODE. All three types of models are trained and compared
upon two data sets, the exfoliation of black phosphorus data set and the phosphorus allotropes data set[5].
We will show explicitly that localized short-range models are not able to learn the dispersion interaction
from the training set. In contrast, the multiscale model combining SOAP and LODE features is able to
accurately capture the dispersion interaction from a general phosphorus data set, and can correctly reproduce
the binding curve of black phosphorus.
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2 Research background
In modern day research, computational methods which rely on large-scale supercomputers, have gained the
same importance as experimental and theoretical studies. With the current computational modeling methods
such as density functional theory (DFT), researchers are able to perform ab initio calculations on realistic
physical systems and predict novel properties without the reliance on experimental data, which has yielded
lots of significant research papers in the field of physics, chemistry and materials science [6, 7, 8].

However, the comparable-to-experiment accuracy of DFT methods results from the fact that they are first
principles calculations, and the computational costs of ab initio methods scale with the cube of the number of
atoms O(N3)[9]. Thus the calculations immediately become formidable for systems with hundreds of atoms.
On the other hand, force field methods have computational costs several orders smaller than DFT because
they only depend on the internal positional and elementary parameters of the systems[10], and simulations
over millions of atoms and millisecond time scales have been performed[11, 12]. As a consequence of the
parametrized nature, force field methods are not as accurate as DFT methods. For simulations with high
accuracy requirements, people still prefer DFT despite its high computational cost.

This situation is changed by the introduction of ML methods in atomic modeling, making the construction of
accurate and less computationally expensive models possible. One key characteristic of the ML methods is
that they are able to extract/fit a pattern from a large amount of data, which makes it an appropriate candidate
for atomic modeling, where people can train potential energy surface (PES) models of certain elements on
DFT data. With finely trained ML PES models, highly accurate and fast calculations can be performed, and
the simulations of large scale systems and long time processes become possible[13, 14, 15].

To reduce the computational costs when training the ML model, people apply a smooth cutoff function
to restrict each atomic neighborhood to a finite sphere, so that distant atoms with minor contributions are
neglected. But for systems where the long-range interactions are important, such as water or graphene, a
localized model can lead to significant deviations from the real values. As a workaround, explicit physics-
based methods to capture the long-range interactions have been proposed[1, 2]. But these methods only
apply in certain circumstances, the same process of extracting the long-range behavior has to be repeated
every time we have a different system. A data-driven method to capture the long-range interactions in atomic
systems, known as the long-distance equivariant (LODE) framework,was proposed by A. Grisafi and M.
Ceriotti[3], where an atomic density potential representation is constructed to fit the long-range interactions
of different kinds. They have verified the capability of LODE in capturing the long-range interactions in
small-scale data sets.

As a further step to [3], in this project we aim at applying LODE to a more general data set where different
allotropes of phosphorus are included, and test the transferrability and capability of capturing the dispersion
interaction of the model on the exfoliation data set. We first compare the learning capability of the SOAP
model, the SOAP + R6 model, the LODE model and the combined SOAP + LODE model in terms of the
long-range dispersion interaction on the exfoliation of black phosphorus data set. Then we move on to a
much larger data set with 4798 training frames to test the transferrability and the learning capability of the
dispersion interaction of the commonly used 2-body + SOAP + R6 model, which is also compared with
a localized 2-body + SOAP model. In the last section, we take 400 training frames from the phosphorus
data set and train a SOAP + LODE model. The transferrability and long-range learning capability of this
model are tested on the exfoliation frames. From the contrast against the pure SOAP model, we show that a
transferrable ML atomic potential model with correct long-range dispersion behavior can be constructed
using a combined SOAP + LODE model.
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3 Representation of atomic systems
The definitions and derivations used here mostly come from the references [16, 17].

3.1 The Dirac notation formalism
The representations of atomic systems can be better formalized under the Dirac notation. We represent
an atomic configuration by a ket |A⟩, which in essence contains the information about the position of each
atom and the elementary composition of this system. And since position and chemical composition are
independent information, we can express |A⟩ in terms of the outer product between these two:

|A⟩ =
∑
i

|ri⟩ ⊗ |αi⟩ , (1)

where |r⟩ stands only for the position information of atomic configuration |A⟩, and |α⟩ only for the
composition information. The sum index i stands for each atom in this configuration.

Furthermore, if we consider a Gaussian distribution of atomic density g(r) of each atom, then in position

Figure 1: Demonstration of Gaussian atomic density

space we have a more explicit expression of Eq.(1):

⟨r|A⟩ =
∑
i

g(r − ri) |αi⟩ , (2)

where we have omitted the outer product symbol.

3.2 Invariance under symmetry operations
The representation given above is not ideal since it does not possess the symmetries of real physical systems,
such as translational, rotational and permutational invariance. To do this, we will integrate |A⟩ over a certain
symmetry groups, equivalently, we are averaging over a symmetry group. This procedure is also known as
the Haar integration[18]:

|A⟩Ŝ =

∫
dŜ Ŝ |A⟩ , (3)

where Ŝ stands for the symmetry group such as the translation group t̂ or the rotation group R̂.

3.2.1 Translational invariance

Let us first consider the translational invariance. Based on Eq.(3), we integrate |A⟩ over the translation group,
which is equivalent to the integration over R3, under the real space basis ⟨r|:

⟨r|A⟩t̂ =
∫

dt̂
〈
r
∣∣ t̂ ∣∣A〉 (4)

=
∑
i

|αi⟩
∫

dt̂
〈
r
∣∣ t̂ ∣∣ ri〉 (5)
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=
∑
i

|αi⟩
∫

dt̂
〈
r + t̂

∣∣ ri〉 (6)

=
∑
i

|αi⟩
∫

dt g(r + t− ri) (7)

=
∑
α

Nα |α⟩ , (8)

where we have used Eq.(1), Eq.(2), and Nα stands for the number of atoms of species |α⟩.

We see from above that the position information is completely lost during the integration. To avoid this, we
define the tensor product of |A⟩ and the corresponding Haar integration:∣∣∣A(ν)

〉
= |A⟩ ⊗ |A⟩ ⊗ ...⊗ |A⟩︸ ︷︷ ︸

ν

, (9)

∣∣∣A(ν)
〉
t̂
=

∫
dt̂ t̂ |A⟩ ⊗ t̂ |A⟩ ⊗ ...⊗ t̂ |A⟩︸ ︷︷ ︸

ν

. (10)

Then we consider the case where ν = 2. We perform the same integration over the translation group but in
this case under two independent real space bases ⟨r| and ⟨r′|:

⟨rr′|A(2)⟩t̂ =
∫

dt̂
〈
r
∣∣ t̂ ∣∣A〉 〈r′ ∣∣ t̂ ∣∣A〉 (11)

=
∑
ij

|αiαj⟩
∫

dt̂
〈
r + t̂

∣∣ ri〉 〈r′ + t̂
∣∣ rj〉 (12)

=
∑
ij

|αiαj⟩
∫

dt g(r + t− ri) g(r
′ + t− rj) (13)

=
∑
ij

|αiαj⟩h(r − r′ − rij), (14)

where in the last step we have used the convolution property of the Gaussian function, and h is a Gaussian
with twice the variance of g.

We notice that there is a redundancy of using two independent real space bases ⟨rr′| because Eq.(14) depends
only on r − r′, so we simply write:

⟨r|A(2)⟩t̂ =
∑
ij

|αiαj⟩h(r − rij), (15)

where r here is the substitution for r − r′ in Eq.(14).

Atom-centered description Furthermore, from Eq.(15) we can group together the terms only related to
atom i:

⟨r|A(2)⟩t̂ =
∑
i

|αi⟩
∑
j

|αj⟩h(r − rij) (16)

≡
∑
i

|αi⟩ ⟨r | ρi⟩ , (17)

thus
|A(2)⟩t̂ =

∑
i

|αi⟩ |ρi⟩ , (18)

where |ρi⟩ is the local environment centered on atom i. Hence, we see that an atom-centered description
naturally results from the integration over translation group.

To clarify, the L.H.S. and R.H.S. of Eq.(17) are still kets, not scalars, because we haven’t dealt with the basis
related to chemical compositions. A more complete expression of Eq.(17) will be

⟨αr|A(2)⟩t̂ =
∑
i

δααi
⟨r | ρi⟩ . (19)
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Locality In real implementations, a smooth cutoff function fc(rij) is added to the representation to confine
the environment of each atom in a finite neighbourhood to lower the computational costs, we have:

⟨r | ρi⟩ ≡
∑
j

|αj⟩h(r − rij)fc(rij). (20)

If atom j is close to atom i, namely rij small, then fc(rij) → 1. If they are far apart, namely rij larger than
the cutoff radius, then fc(rij) = 0.

Though adding the cutoff function has reduced the computational cost, a clear drawback of it is that we can
no longer consider the contributions from the atoms outside the cutoff radius, which makes us incapable of
capturing the long-range interactions. Further more, even without the cutoff function, the quick decay of
the Gaussian-like atomic density prevents us from learning the long-range interaction which decays much
slower than the Gaussian, such as the dispersion interaction. We will introduce the long-distance equivarant
(LODE) framework[3] to see how we can learn the correct behavior of the long-range interactions in later
chapters.

3.2.2 Rotational invariance

For the rotational invariance, we perform the same steps as in section 3.2.1 to have∣∣∣A(ν)
〉
R̂
=

∫
dR̂ R̂ |A⟩ ⊗ R̂ |A⟩ ⊗ ...⊗ R̂ |A⟩︸ ︷︷ ︸

ν

, (21)

where R̂ stands for the rotation group. We also see notations like |A⊗ν⟩, which has the same meaning as
Eq.(21), and the line above means the average over the rotation group. From now on we will use the later
notation.

A convenient basis to evaluate the rotationally-invariant representations is the radial function Rn(r) = ⟨r |n⟩
and the spherical harmonic Y m

l (r̂) = ⟨r̂ | lm⟩, because we can derive explicit expansion coefficients using
them. Notice that r = (r, r̂), where r is the 3-dimensional position vector, r is the length of r, and r̂ is a
unit vector which only contains the angular (directional) information of r.

To clarify,

⟨αnlm |A⟩ =
∫

dr ⟨αnlm | r⟩ ⟨r |A⟩ (22)

=
∑
i

δα,αi

∫
dr ⟨αnlm | r⟩ ⟨r | ri⟩ (23)

=
∑
i

δα,αi

∫
dr ⟨n | r⟩ ⟨lm | r̂⟩ ⟨r, r̂ | ri⟩ , (24)

where we have used Eq.(1).

Now we can derive the explicit expressions for the symmetrized field representations of order ν = 1, 2:

⟨α1n1l1m1|ρ⊗1
i ⟩ =

∫
dR̂ ⟨α1n1l1m1|R̂|ρi⟩ (25)

=
∑
lm

∫
dR̂ ⟨α1n1l1m1|R̂|α1n1lm⟩ ⟨α1n1lm|ρi⟩ (26)

=
∑
lm

∫
dR̂ ⟨l1m1|R̂|lm⟩ ⟨α1n1lm|ρi⟩ (27)

=
∑
lm

∫
dR̂Dl1

m1mδl1l ⟨α1n1lm|ρi⟩ (28)

=
∑
m

⟨α1n1l1m|ρi⟩
∫

dR̂Dl1
m1m (29)
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=
∑
m

⟨α1n1l1m|ρi⟩
∫

dR̂Dl1
m1mD0

00 (30)

=
8π2

2l1 + 1
δm1,0δl1,0 ⟨α1n1l1m1 | ρi⟩ , (31)

where |ρi⟩ is the atom-centered representation obtained from the second order integration over the transla-
tional group. From the second line to third line we have used the fact that R̂ does not operate on |α1n1⟩ and
that ⟨α1n1 |α1n1⟩ = 1. In the last step we have used the orthogonality property of the Wigner matrix.

⟨α1n1l1m1;α2n2l2m2|ρ⊗2
i ⟩ =

∫
dR̂ ⟨α1n1l1m1|R̂|ρi⟩ ⟨α2n2l2m2|R̂|ρi⟩ (32)

=
∑
lm

∑
l′m′

∫
dR̂ ⟨α1n1l1m1|R̂|α1n1lm⟩ ⟨α1n1lm|ρi⟩ (33)

⟨α2n2l2m2|R̂|α2n2l
′m′⟩ ⟨α2n2l

′m′|ρi⟩

=
∑
lm

∑
l′m′

∫
dR̂Dl1

m1mδl1lD
l2
m2m′δl2l′ ⟨α1n1lm|ρi⟩ ⟨α2n2l

′m′|ρi⟩ (34)

=
∑
mm′

∫
dR̂Dl1

m1mDl2
m2m′ ⟨α1n1l1m|ρi⟩ ⟨α2n2l2m

′|ρi⟩ (35)

=
∑
mm′

(−1)m1−m

∫
dR̂Dl1 ∗

−m1,−mDl2
m2m′ ⟨α1n1l1m|ρi⟩ ⟨α2n2l2m

′|ρi⟩

(36)

=
∑
mm′

(−1)m−m1

∫
dR̂Dl1 ∗

m1,mDl2
m2m′ ⟨α1n1l1(−m)|ρi⟩ ⟨α2n2l2m

′|ρi⟩

(37)

=
∑
mm′

(−1)m−m1 ⟨α1n1l1(−m)|ρi⟩ ⟨α2n2l2m
′|ρi⟩

∫
dR̂Dl1 ∗

m1,mDl2
m2m′

(38)

=
∑
mm′

(−1)m−m1
8π2

2l1 + 1
⟨α1n1l1(−m)|ρi⟩ ⟨α2n2l2m

′|ρi⟩ δl1l2δm1m2
δmm′

(39)

=
∑
m

(−1)m−m1
8π2

2l1 + 1
⟨α1n1l1(−m)|ρi⟩ ⟨α2n2l2m|ρi⟩ δl1l2δm1m2

,

(40)

where we have used the orthogonality property and complex conjugate property of the Wigner matrix.

Similar to the case of integration over the translation group, we have redundancy in indices after sym-
metrization for the rotation group. For example, for ν = 1, the expansion coefficients can be rewritten
as

⟨αnlm|ρ⊗1
i ⟩ = 8π2

2l + 1
δm,0δl,0 ⟨αnlm | ρi⟩ (41)

=
8π2

2l + 1
⟨αn00 | ρi⟩ (42)

=
8π2

2l + 1
⟨αn | ρi⟩ , (43)

which is in nature a pair correlation function

⟨αn|ρ⊗1
i ⟩ =

∫
dR̂ ⟨αn|R̂|ρi⟩ (44)

=

∫
dR̂ ⟨αn | ρi⟩ (45)
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∝ ⟨αn | ρi⟩ (46)

=

∫
dx ⟨n|x⟩ ⟨00|x̂⟩ ⟨αx|ρi⟩ (47)

∝
∫

dxx2 ⟨n|x⟩
∫

dx̂ ⟨αx|ρi⟩ (48)

∝
∫

dr r2R∗
n(r)gα(r), (49)

where we have used R̂ |n⟩ = |n⟩, and gα(r) stands for the radial distribution of α atoms of the i-atom-
centered environment, which is called a pair correlation function.

For ν = 2, the expansion coefficients can be rewritten as

⟨α1n1;α2n2; l|ρ⊗2
i ⟩ = (−1)l√

2l + 1

∑
m

(−1)m ⟨α1n1lm|ρi⟩ ⟨α2l2l(−m)|ρi⟩ , (50)

which corresponds to the SOAP features that are used as the short-range part of our model. The ν = 2

case can also be expressed in real space basis ⟨α1r1;α2r2;ω|ρ⊗2
i ⟩, which shows its nature as a three-body

correlation function:

Figure 2: Demonstration of the three-body correlation representation

3.3 The LODE representation
As mentioned before, using the Gaussian atomic density and applying the cutoff function in the representation
will disable the model from learning the long-range interactions. Here, we introduce the long-distance
equivarant (LODE) framework[3] to see how we can construct the representation that is capable of capturing
the long-range interactions.

Based on our previous definition of the Dirac notation Eq.(2), the atomic-density potential representation is
defined as

⟨r | Vp⟩ =
∑
i

|αi⟩
∫

dr′
g(r′ − ri)

|r′ − r|p
, (51)

where p characterizes the long-range behavior of this representation, e.g. p = 1 for the electrostatic
interaction, p = 6 for the dispersion interaction.

Compared with Eq.(2), Eq.(51) introduces a non-localized behavior that is determined by the value of
p, therefore the central atom can still "feel" the existences of the atoms far away whose density decay
asymptotically the same at long distances as the long-range interactions. In the following derivation, we will
consider the special case where p = 1 to derive the explicit function that we use in the representation.

Consider the Gaussian atomic densities of species α,

ρα(r) =
1

(2πσ2)3/2

∑
i∈α

e−
(r−ri)

2

2σ2 , (52)
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which satisfies
∫
Ω
ρα(r) = Nα, where Ω is the total volume and Nα is the number of atoms of species α. σ

is called the smearing. The Fourier transform of this Gaussian density is,

ρα(k) =
1

Ω

∫
Ω

ρα(r)e
−ikrdr (53)

=
1

Ω

∑
i∈α

∫
Ω

1

(2πσ2)3/2
e−

(r−ri)
2

2σ2 e−ikrdr (54)

=
1

Ω

∑
i∈α

∫
Ω

1

(2πσ2)3/2
e−

(r−ri)
2

2σ2 e−ik(r−ri)d(r − ri)e
−ikri (55)

=
1

Ω

(∑
i∈α

e−ikri

)
e−

k2σ2

2 . (56)

From poisson equation ∇2V (r) = −4πρ(r), we have

⟨αr|V⟩ =
∫ ∫

−4πρα(r)drdr (57)

=
∑
k ̸=0

4π

k2
ρα(k)e

ikr (58)

=
1

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
4π

k2
e−

k2σ2

2 eikr. (59)

Using the plane wave expansion

eikr = 4π

∞∑
l=0

∑
|m|≤l

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), (60)

where k̂ and r̂ stand for the angular part of k and r, and jl is a spherical Bessel function. We have

⟨αrlm|Vj⟩ =
∫

⟨rlm|r⟩ ⟨αr|Vj⟩ dr (61)

=

∫
⟨r| r⟩ ⟨lm|r̂⟩ ⟨αr|Vj⟩ dr (62)

=

∫
⟨r| r⟩Y ∗

lm(r̂)
1

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
4π

k2
e−

k2σ2

2 eikrdr (63)

=

∫
⟨r| r⟩Y ∗

lm(r̂)
1

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
16π2

k2
e−

k2σ2

2 (64)

∞∑
l′=0

∑
|m′|≤l′

il
′

jl′(kr)Y
∗
l′m′(k̂)Yl′m′(r̂)dr (65)

=

∫
radial

⟨r| r⟩ dr 1

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
16π2

k2
e−

k2σ2

2 (66)

∞∑
l′=0

∑
|m′|≤l′

il
′

jl′(kr)Y
∗
l′m′(k̂)

∫
angular

Yl′m′(r̂)Y ∗
lm(r̂)dr̂ (67)

=

∫
radial

⟨r| r⟩ dr 1

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
16π2

k2
e−

k2σ2

2 (68)

∞∑
l′=0

∑
|m′|≤l′

il
′

jl′(kr)Y
∗
l′m′(k̂)δll′δmm′ (69)
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=

∫
radial

⟨r| r⟩ dr 1

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
16π2

k2
e−

k2σ2

2 iljl(kr)Y
∗
lm(k̂) (70)

=
16π2

Ω

∑
k ̸=0

(∑
i∈α

e−ikri

)
e−

k2σ2

2

k2
iljl(kr)Y

∗
lm(k̂), (71)

where r only stands for the radial part of r and we have considered
∫
radial

⟨r|r⟩ dr = 1.

This representation does not yet possess the rotational invariance (if the number of angular functions is not
set to zero), which is implemented by calculating the power spectrum of the above function.
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4 Machine learning models
The definitions and derivations used here mostly come from the references [19, 20].

4.1 Linear regression model
The simplest machine learning model should be the linear regression model. It is linear in terms of the
linearity of the weights of the fitted function. We define the linear model to be

y(x⃗, ω⃗) =

M∑
i=1

ωiϕi(x⃗), (72)

where x⃗ is the input data, ω is the weight, ϕ(x⃗) is called the basis function, and M is the total number of
basis functions. The above form can be reformulated as

y⃗(ω⃗) = Φ̂ω⃗, (73)

where
ω⃗T =

(
ω1 ω2 ... ωM

)
, (74)

and

Φ̂ =


ϕ1(x⃗1) ϕ2(x⃗1) ... ϕM (x⃗1)
ϕ1(x⃗2) ϕ2(x⃗2) ... ϕM (x⃗2)

... ... ... ...
ϕ1(x⃗N ) ϕ2(x⃗N ) ... ϕM (x⃗N )

 (75)

is called the design matrix, where N is the total number of input points.

The training of the linear model is equivalent to finding the weights that minimize the loss function, which is
defined as

L =
1

2

N∑
i=1

(ti − yi)
2 (76)

=
1

2
∥t⃗− y⃗∥2 (77)

=
1

2
(⃗t− y⃗)T (⃗t− y⃗), (78)

where t⃗T =
(
t1 t2 ... tN

)
are the target values that we are trying to learn/fit.

Minimizing the loss function with respect to the weights gives

∇ω⃗TL = −1

2
Φ̂T (⃗t− Φ̂ω⃗) = 0, (79)

which yields
ω⃗ = (Φ̂T Φ̂)−1Φ̂T t⃗. (80)

However, defining the loss function in this way will lead to overfitting, which means that the model is greatly
tuned and distorted by the noises in the target values, thus the for such a model the transferrability will be
weak even though it gives almost perfect predictions on the training data. To solve this problem, we usually
add a regularization term in the loss function

L =
1

2
∥t⃗− y⃗∥2 + λ

2
∥ω⃗∥2, (81)

where λ is the regularization coefficient that controls the importance of the regularization term, in the context
of this project we will call λ the regularizer.

The expression of calculating the weights that minimize the loss function after adding the regularization term
is

ω⃗ = (Φ̂T Φ̂ + λI)−1Φ̂T t⃗. (82)
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4.2 The kernel method
The idea behind the kernel method is that we can make predictions based on the distance between the new
input data and the selected sparse training data. The kernel k(x⃗, x⃗m) is a function that measures the similarity
of two points x⃗ and x⃗m. Now the linear model is written as

y(x⃗, ω⃗) =

M∑
m=1

ωmk(x⃗, x⃗m), (83)

y⃗(ω⃗) = K̂NM ω⃗, (84)

where

K̂NM =


k(x⃗1, x⃗m1

) k(x⃗1, x⃗m2
) ... k(x⃗1, x⃗mM

)
k(x⃗2, x⃗m1

) k(x⃗2, x⃗m2
) ... k(x⃗2, x⃗mM

)
... ... ... ...

k(x⃗N , x⃗m1
) k(x⃗N , x⃗m2

) ... k(x⃗N , x⃗mM
)

 (85)

and x⃗m are the selected representative data points from the training set, which are called the sparse points or
representative points, and M is the total number of sparse points.

There are many functions that can be used as the kernel to measure the similarity of two points. In our
project, we use the dot product as the kernel function

k(x⃗, x⃗m) = |x⃗ · x⃗m|z, (86)

where z is referred as zeta during the training, which affects the performance of the model.

To avoid overfitting, the regularization term is still needed. For the kernel method, in most cases we choose
λ
2 ∥ω∥

2
KMM

= λ
2

∑
n,m ωnk(x⃗n, x⃗m)ωm as the regularization term, thus the loss function can be written as

L =
1

2
∥t⃗− y⃗∥2 + λ

2
∥ω∥2KMM

. (87)

With the above loss function, the optimal weights that minimize the loss function is obtained from

ω⃗ = (K̂T
NMK̂NM + λK̂MM )−1K̂T

NM t⃗. (88)

where

K̂MM =


k(x⃗m1

, x⃗m1
) k(x⃗m1

, x⃗m2
) ... k(x⃗m1

, x⃗mM
)

k(x⃗m2
, x⃗m1

) k(x⃗m2
, x⃗m2

) ... k(x⃗m2
, x⃗mM

)
... ... ... ...

k(x⃗mM
, x⃗m1) k(x⃗mM

, x⃗m2) ... k(x⃗mM
, x⃗mM

)

 (89)

Though using non-linear functions as the basis functions, the kernel model is still a linear model because of
the linearity in the weights. If we choose the same regularization term as the linear regression model, the
weights can be calculated using exactly the same expression as Eq.(82), and thus it is possible of combining
these two models by expanding the basis functions, or equivalently, by stacking the design matrices.
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5 Learning of the dispersion interaction
In this section, we will start with a simple yet representative training set, the exfoliation of black phosphorus,
to compare the performances of three different models we mentioned at the beginning, namely a pure
short-range model using SOAP features, a short-range model using SOAP features combined with an R6
model, a multiscale model using combined features of SOAP and LODE. Their long-range learning capability
are especially mentioned. Then we move on to a larger and general data set, the phosphorus allotropes data
set, to train the three models and compare their performances on reproducing the binding curve. The detailed
training parameters of all the models shown here can be found in the Appendix 8.1.

5.1 The exfoliation data set
There are in total 100 frames in this training set[21], with each frame containing 8 atoms as shown below.

Figure 3: A representative training frame from the exfoliation data set. The length of the dotted line is
defined as the interlayer distance.

We define the interlayer distance as the length of the dotted line in Fig.(3). In this training set, the interlayer
distance changes from 3.84 Å to 13.74 Å evenly. The reference DFT plus many-body dispersion (DFT+MBD)
energies and forces of these frames are calculated without doing relaxation, so the only difference between
different frames is the interlayer distance. Below we show the DFT+MBD binding curve of this data set.

Figure 4: The DFT+MBD energy curve of the exfoliation data set.

5.1.1 Manual extraction of the dispersion interaction potential and the SOAP model

In this section we will train a model on the exfoliation data set using SOAP. However, SOAP itself is not
capable of capturing the long-range interaction, so for the long-range part we have to extract the potential
manually.

The dispersion potential (or R6 potential) is extracted from the exfoliation data set in the following steps:

• Extend the unit cell, except for the exfoliation axis, such that all atoms within the neighbourhood,
which is determined by the cutoff radius, of the atoms from the original cell are included
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• Classify the atoms into the upper layer and the lower layer, then obtain all interlayer atom pairs and
their distances

• Fit the dispersion potential, which is defined as −
∑

ij C/r6ij , where i and j denote the atoms from
the upper and lower layers respectively

The fitted curve is shown in Fig.(5a). Here we use the energy with the largest interlayer distance as the
reference energy, and it is subtracted from the energies of all other exfoliation frames. We see a slight
mismatch of these two curves, which is expected because the long-range behavior of the exfoliation curve is
not exactly ∼ 1/r6.

(a) Fitting of the long-range tail of the exfoliation
curve.

(b) Comparison among the fitted curve, the refer-
ence data points and the cublic spline fit.

Figure 5: Manual extraction of the dispersion potential.

As a confirmation, we compare the fitted R6 curve with the data points of the R6 potential provided in [5], as
shown in Fig.(5b). The eventual R6 potential is obtained by fitting a cubic spline function to the reference
data points shown in Fig.(5b), where a zero point is added manually at 3Å.

Having obtained the R6 potential, we are prepared to train a SOAP + R6 model where the SOAP model is
trained on

Etrain = EDFT+MBD −
∑
i>j

VR6(rij), (90)

Ftrain = FDFT+MBD +∇
∑
i>j

VR6(rij). (91)

The training results are shown below.

(a) Predicted binding curve of a pure SOAP model. (b) Predicted binding curve of a SOAP+R6 model.

Figure 6: Comparison of the binding curve predictions between the SOAP model and the SOAP+R6 model.

In Fig.(6a), we see that the energy predictions are all flat for interlayer distances larger than the cutoff
distance, which demonstrates the problem we mentioned before about the locality of the SOAP model that
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the environmental changes outside the cutoff are ignored. When combined with the R6 model, we see in
Fig.(6b) that the long-range tail of the binding curve is perfectly captured. As a matter of fact, the training
energies after subtracting the R6 potential are flat for the long-range part, therefore in Fig.(6b) the long-range
behavior is completely determined by the manually extracted R6 potential, while the SOAP model only
determines the baseline.

5.1.2 the LODE model and the SOAP + αLODE model

The powerful aspect of LODE is that one can still capture the long-range interaction without the need to
manually extract it, which makes it possible to learn the long-range interactions in systems where the layered
structures, from which the long-range interaction is fitted, are not existent. Furthermore, the training of the
model is much simpler than training a combined model. Below we show the predictions of the binding curve
using a LODE model.

(a) Predicted binding curve of the LODE model
trained on all 100 exfoliation frames.

(b) Predicted binding curve of the LODE model
trained on the first 40 exfoliation frames plus the
largest-separation frame.

Figure 7: Training of the LODE model on the exfoliation data set.

We see from Fig.(7a) that the binding curve is perfectly learned using LODE. However, using a pure LODE
model does not guarantee a good long-range model because it is not able to extrapolate (or more strictly
speaking, interpolate within the range of the exfoliation) the long-range behavior once the corresponding
training frames are removed, as shown in Fig.(7b). As a solution to this problem, we use a new feature
matrix which is the combination of the SOAP features and the LODE features, where in this case we use
radial spectrum invariants for the LODE part to capture the dispersion interaction, such that the short-range
part and long-range part can be trained and learned at the same time. For a given atom i, its energy reads

ϵ(i) =
∑
q1

ϵSOAP
i (q1) + α

∑
q2

ϵLODE
i (q2), (92)

where q1 denotes the SOAP vector, and q2 denotes the LODE vector. We temporarily refer to this one as the
SOAP + αLODE model.

The training results using the SOAP + αLODE model are shown in Fig.(8). Here we are only using the first
40 frames in the data set, where the interlayer distances are smaller than 7.8Å, plus the last frame where the
interlayer distance is 13.74Å as the reference point. Wee see that this model successfully extrapolates for
frames with large interlayer distance. It should be stated that for the SOAP + αLODE model, the parameter
α needs to be finely tuned if one wants to reach high accuracy.
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Figure 8: Predicted binding curve of the SOAP + αLODE model trained on the first 40 exfoliation frames
plus the largest-separation frame.

5.2 The phosphorus allotropes data set
Due to the unparametric nature of the machine-learning method, the quality of the model depends highly
on the training set. For an atomic potential that is transferrable, the data set should be as much diverse
and representative as possible. The training set we use here is the same as the one in [5], where they
combined the structures generated from two disjoint methods, manual construction and GAP+RSS (Gaussian
approximation potential + random structure search), to increase the diversity and representativeness of the
data set. The detailed composition of this data set is shown in Table.(1).

Cells Atoms Standard deviation (eV/atom)

GAP-RSS

Initial (random) 199 1920 0.802550
Intermediates 995 9320 0.268517
Relaxed 596 5706 0.223722
3-coordinated 400 7412 0.102984

Manually
Constructed
Structures

Liquid Network 164 40672 0.111348
Molecular (P4) 88 21824 0.009957

2D
Ribbons 40 4216 0.058685
Large sheets 87 11535 0.040544
Exfoliation 1234 14172 0.129646

Bulk crystals 959 24292 0.151315
P2/P4 molecules 35 110 1.083762
Free atom 1 1 0.0

Total 4798 141180

Table 1: Detailed composition of the phosphorus allotropes data set

A visualized demonstration of this data set is given in the Appendix (section 8.2).

5.2.1 The 2-body+SOAP+R6 model

As the first trial, we train a model where the long-range part is captured by the manually extracted R6
potential as in section 5.1.1. We also add a 2-body model here in the training to increase the accuracy. The
2-body model is trained first, then the SOAP model is trained on the differences between the 2-body model
predictions and the references. Due to the diversity of the training set, we apply different regularization
values for different subsets to further increase the accuracy. The detailed training parameters can be found in
section 8.1.6.

In Fig.(9) we show the parity plots of the training set of the 2-body + SOAP + R6 model. We separate the
structures from different methods into two columns, and the energies and forces into two different rows.
Structures from different subsets are marked in different colors.
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Figure 9: Parity plots of the training set of the 2-body + SOAP + R6 model.

In this model, we have achieved comparable RMSEs with respect to the published work [5]. A more
visualized comparison is given in Fig.(10). Due to the different implementations of the calculation packages
we use, such as the 2-body model,we do not expect the results to be exactly the same. In this plot we see the
forces predictions are very close, yet there are some overfittings for the energies, such as P4 molecular liquid
and random structures. The overfitting is not solved even if we increase the customized regularization values
for them, which suggests this problem may come from the selection of the sparse points. Besides, we have
tuned the customized regularization values to achieve better results. As can be seen from the plot, our model
gives better predictions than the reference model on 2D structures.

What we care about the most about this model is its capability on capturing the dispersion interaction, which
is examined using the exfoliation data set we introduced before. The predicted binding curve is shown in
Fig.(11). For better illustration, we also include the same predictions of the 2-body+SOAP model, which is
trained using exactly the same parameters without the R6 model. For the short-range part, these two models
give similar predictions, but the contrast near the cutoff distance clearly shows that without the R6 model, a
SOAP model is not able to learn the long-range interactions, as has been confirmed before.

5.2.2 The SOAP+αLODE model

In this section we will show the SOAP+αLODE model trained on the phosphorus allotropes data set and
test its capability to correctly learn the dispersion interaction. Here we are only using part of the total
phosphorus data set because the primitive version of pyLODE is computationally expensive. Calculating
the LODE feature matrix without parallelization of the total data set could easily take days even with small
training parameters. What’s more, it will generate two matrices of dimension 140910× 252 for the energy
and 19577410 × 3 × 252 for the forces (using nmax = lmax = 6 for example), which will crash the
regression model due to the memory limit when we do matrix multiplication. Therefore using a smaller yet
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Figure 10: Histogram comparison of the RMSEs of our model and the reference model[5].

Figure 11: Predicted binding curves of the 2-body+SOAP+R6 model and the 2-body+SOAP model.

representative data set will not only save the computational time and memory, but also allow us to tune the
training parameters quickly and efficiently. Most importantly, the key statement that LODE is able to capture
the dispersion interaction in a general training set can still be demonstrated.

The training set we use here is obtained by taking every 10 frames from the phosphorus allotropes data set,
such that various structures can be included. We further exclude the first 80 frames in the selected data set to
speed up the training. A detailed composition of the training set used here can be found in the Appendix
8.1.7. The test set is the exfoliation data set we introduced before.

The tuning of the SOAP+αLODE model is very important, since improper parameters will completely
mislead the model that the dispersion interaction can not be learned. In our training, the main three
parameters we tuned are the cutoff radius, the cutoff width of the SOAP model and the value of α which
determines the relative importance of LODE.

In Fig.(12) we show the change of energy RMSEs of the test set (the exfoliation data set) using different
model parameters. We see from Fig.(12b) that the optimal value of α falls in a small region. As long as
α is determined, the performance of the model does not rely too much on the cutoff radius or the cutoff
width of the SOAP model, while the relative values of those two significantly affects the performance of the
short-range part. It should be noted that the quality of the short-range model affects significantly whether
LODE can learn the long-range interactions. From the previous experience, we suggest to firstly construct an
accurate short-range model, then adjust the value of α to learn the long-range part.
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(a) Cutoff width vs cutoff radius (b) Alpha vs cutoff radius

(c) Alpha vs cutoff width

Figure 12: Energy RMSE plots of the exfoliation frames for different model parameters

(a) the SOAP model (b) the SOAP + αLODE model

Figure 13: Binding curve predictions of the SOAP model and the SOAP + αLODE model trained on part of
the phosphorus data set.

The binding curve predictions of the SOAP + αLODE model trained on part of the phosphorus data set is
shown in Fig.(13). In Fig.(13a), we show the predictions of a pure SOAP model. The short-range energy
predictions of this model are very accurate, and the flat predictions outside the cutoff radius are expected. In
Fig.(13b) we increase the contribution of the LODE feature matrix to learn the dispersion interaction. The
clear contrast here shows that we successfully capture the dispersion interaction in the phosphorus data set
by using a SOAP + αLODE model.

Another very important criteria of ML models is extrapolation capability. Here we are using a data set in
which 68 black phosphorus frames are included. Even though there are only 7 frames whose interlayer
distance is larger than 10Å, the model is still performing an interpolative task on the exfoliation frames. In
our trials we have tried excluding all black phosphorus frames in the training set, however, this results in a
deteriorated short-range model and thus affects the accuracy of the long-range part. Therefore, the test of the
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extrapolation capability of LODE still remains an open question, and an extrapolative short-range model is
crucial, which should be trained on a data set with acceptable size so that the LODE feature matrix will not
crash the computer.
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6 Summary
In this project, we have trained a general multi-scale SOAP + αLODE model to learn the dispersion
interaction in phosphorus, and it is successfully examined on the exfoliation process of black phosphorus,
where the dispersion interaction dominates the tail of the binding curve. We expect the SOAP + αLODE
model to be capable of learning the long-range interactions in a general data set given the following three
conditions:

• an accurate short-range model

• an optimal value of α

• a correct potential exponent in the LODE representation

As a comparison with the physics-based approach where the dispersion interaction is approximated using the
fitted R6 potential, the SOAP + αLODE model has a higher computational cost, and for very large data set
the training of the model is likely to crash due to the memory limit. On the other hand, R6 potential can only
be extracted from systems where layered structures are available, so the SOAP + αLODE model is certainly
more general and applicable to arbitrary physical systems with long-range interactions.

Besides the successful test in this project, we still notice the high computational resource requirement when
we include LODE features. On the implementation side, my colleagues are working on a new implementation
of LODE in Rust to speed up the running of codes. On the fundamental side, though the construction of
LODE feature matrix can be reduced to several hours if we do parallelization, the mathematical manipulation
of those huge matices are inevitable in the training process. In the future, it is worth trying to parallelize
the training process as well, that the calculation of the optimal weights vector can be subdivided into small
calculations and the final vector is obtained by stacking all of them. In that case, the training of a SOAP +
αLODE model on thousands of frames is possible, so does the extrapolation test.
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8 Appendix

8.1 Summary of training parameters and plots
8.1.1 SOAP model trained on all 100 exfoliation frames

training set invariants type model type E regularizer F regularizer

all 100 exfoliation frames power-spectrum
linear model

do_normalize = False 1.25e-4 1.25e-4

The hyper parameters are

hypers_rascaline = {
"cutoff": 5.,
"atomic_gaussian_width": 0.3,
"max_radial": 10,
"max_angular": 10,
"radial_basis": {"Gto": {}},
"cutoff_function": {"ShiftedCosine": {"width": 1.}},
"gradients": True

}

The energy RMSE of this model is 0.00759165 eV/atom.

The forces RMSE of this model is 0.008069327104658661 eV/Å.

Figure 14: Parity plots of the SOAP model trained on all 100 exfoliation frames

Figure 15: Predicted binding curve of the SOAP model trained on all 100 exfoliation frames
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8.1.2 SOAP+R6 model trained on all 100 exfoliation frames

training set invariants type model type E regularizer F regularizer

all 100 exfoliation frames power-spectrum
linear model

do_normalize = False 1.25e-4 1.25e-4

The hyper parameters are

hypers_rascaline = {
"cutoff": 5.,
"atomic_gaussian_width": 0.3,
"max_radial": 10,
"max_angular": 10,
"radial_basis": {"Gto": {}},
"cutoff_function": {"ShiftedCosine": {"width": 1.}},
"gradients": True

}

The energy RMSE of this model is 0.00131 eV/atom.

The forces RMSE of this model is 0.006396407970904036 eV/Å.

Figure 16: Parity plots of the SOAP+R6 model trained on all 100 exfoliation frames

Figure 17: Predicted binding curve of the SOAP+R6 model trained on all 100 exfoliation frames
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8.1.3 LODE model trained on all 100 exfoliation frames

training set invariants type model type E regularizer F regularizer

all 100 exfoliation frames power-spectrum
linear model

do_normalize = False 1.25e-4 1.25e-4

The hyper parameters are

hypers_lode = {
’smearing’:0.7,
’max_angular’:6,
’max_radial’:6,
’cutoff_radius’:5.,
’potential_exponent’:1,
’radial_basis’: ’gto’,
’compute_gradients’:True

}

The energy RMSE of this model is 0.0013711 eV/atom.

The forces RMSE of this model is 0.00543551537509253 eV/Å.

Figure 18: Parity plots of the LODE model trained on all 100 exfoliation frames

Figure 19: Predicted binding curve of the LODE model trained on all 100 exfoliation frames
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8.1.4 LODE model trained on the first 40 + the last exfoliation frames

training set invariants type model type E regularizer F regularizer
the first 40 exfoliation frames
+ the largest-separation frame power-spectrum

linear model
do_normalize = False 1.25e-4 1.25e-4

The hyper parameters are

hypers_lode = {
’smearing’:0.7,
’max_angular’:6,
’max_radial’:6,
’cutoff_radius’:5.,
’potential_exponent’:1,
’radial_basis’: ’gto’,
’compute_gradients’:True

}

The energy RMSE of this model is 9.85302012 eV/atom.

The forces RMSE of this model is 8.55970805560699 eV/Å.

Figure 20: Parity plots of the LODE model trained on the first 40 + the last exfoliation frames

Figure 21: Predicted binding curve of the LODE model trained on the first 40 + the last exfoliation frames
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8.1.5 SOAP+αLODE model trained on the first 40 + the last exfoliation frames

training set invariants type model type E regularizer F regularizer

the first 40 exfoliation frames
+ the largest-separation frame

SOAP:
power-spectrum

LODE:
radial-spectrum

linear model
do_normalize = False 1.25e-4 1.25e-4

The hyper parameters are

hypers_lode = {
’smearing’:0.7,
’max_angular’:0,
’max_radial’:10,
’cutoff_radius’:5.,
’potential_exponent’:6,
’radial_basis’: ’gto’,
’compute_gradients’:True

}
hypers_rascaline = {

"cutoff": 4.5,
"atomic_gaussian_width": 0.7,
"max_radial": 6,
"max_angular": 6,
"radial_basis": {"Gto": {}},
"cutoff_function": {"ShiftedCosine": {"width": 1.}},
"gradients": True

}

The energy RMSE of this model is 0.00143552 eV/atom.

The forces RMSE of this model is 0.004444833876084638 eV/Å.

Figure 22: Parity plots of the SOAP + αLODE model trained on the first 40 + the last exfoliation frames

Figure 23: Predicted binding curve of the SOAP + αLODE model trained on the first 40 + the last exfoliation
frames
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8.1.6 2bd+SOAP+R6 model trained on the total data set

Here are the training parameters of this model.

2-body model SOAP model
training set all 4798 phosphorus frames all 4798 phosphorus frames

cutoff 5. 5.
nmax 12 12
lmax 1 6

normalization False True
number of sparse points 15 8000

zeta 1 4
energy regularization 0.003 customized
forces regularization 0.003 customized

gaussian constant 0.5 0.5
cutoff width 1.0 1.0

The customized regularization values for each subset are shown in Table.(2).

Energy regularization Forces regularization
P2/P4 0.03 0.4

rss_200 0.035 0.4
rss_005 0.035 0.4

2D 0.01 0.07
rss_3c 0.025 0.4

cryst_dist 0.03 0.3
liq_12_03_02_network 0.03 0.4

rss_rnd 0.05 0.35
liq_12_03_01_liqP4 0.4 0.5

phosphorene 0.03 0.4
phosphorus_ribbons 0.03 0.4

isolated_atom 0.04 0.6

Table 2: Customized regularization values for different subsets

The parity plots of the training set have been given in Fig.(9). Here we show the parity plots of the test
set (ref. [5]) from the same model. In general, the predictions agree very well with the reference values,
but we see a noticeable mismatch for the energy parity for a subset labeled with ’hp’, which stands for
high-pressure structures. This comes from the fact that high-pressure structures are not included in the
training set, therefore resulting in larger errors.
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Figure 24: Parity plots of the training set of the 2-body + SOAP + R6 model.

Figure 25: Parity plots of the test set of the 2-body + SOAP + R6 model.
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8.1.7 SOAP model trained on 1/10 of the total data set

The composition of the training set is shown in Table (3).

2D cryst_dist rss_200 rss_3c rss_005 rss_rnd total
120 66 60 32 104 18 400

Table 3: Composition of one tenth of the phosphorus data set

The training parameters are:

training set invariants type model type E regularizer F regularizer

shown in Table (3) power spectrum
linear model

do_normalize = False 1.25e-4 1.25e-2

The hyper parameters are:

hypers_rascaline = {
"cutoff": 4.5,
"atomic_gaussian_width": 0.2,
"max_radial": 10,
"max_angular": 10,
"radial_basis": {"Gto": {}},
"cutoff_function": {"ShiftedCosine": {"width": 1.5}},
"gradients": True

}

The energy RMSE of the training set is 0.05484343 eV/atom.

The forces RMSE of the training set is 0.48150174328302936 eV/Å.

Figure 26: Parity plots of the SOAP model trained on 1/10 of the phosphorus data set

Figure 27: Predicted binding curve of the SOAP model trained on 1/10 of the phosphorus data set
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8.1.8 SOAP + αLODE model trained on 1/10 of the total data set

training set invariants type model type E regularizer F regularizer

shown in Table (3)

SOAP:
power spectrum

LODE:
radial spectrum

linear model
do_normalize = False 1.25e-4 1.25e-2

The hyper parameters are:

hypers_lode = {
’smearing’:1.4,
’max_angular’:0,
’max_radial’:10,
’cutoff_radius’:5.,
’potential_exponent’:6,
’radial_basis’: ’gto’,
’compute_gradients’:True

}
hypers_rascaline = {

"cutoff": 4.5,
"atomic_gaussian_width": 0.2,
"max_radial": 10,
"max_angular": 10,
"radial_basis": {"Gto": {}},
"cutoff_function": {"ShiftedCosine": {"width": 1.5}},
"gradients": True

}

The energy RMSE of the training set is 0.05419398 eV/atom.

The forces RMSE of the training set is 0.482292372706692 eV/Å.

Figure 28: Parity plots of the SOAP + αLODE model trained on 1/10 of the phosphorus data set

Figure 29: Predicted binding curve of the SOAP + αLODE model trained on 1/10 of the phosphorus data set
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8.2 Visualized representative frames from the phosphorus allotropes data set
In this section we select representative frames from each subset in the phosphorus allotropes data set. Frames
from GAP-RSS and manually constructed structures are shown separately.

Manually constructed frames:

(a) P2 molecules (b) P4 molecules (c) P4 molecules liquid

(d) Network liquid (e) phosphorene ribbons (f) phosphorene

(g) 2D structures (h) crystal structures (i) isolated atom

Figure 30: Representative manually constructed structures from the phosphorus allotropes data set.
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GAP-RSS frames:

(a) rss-3c type 1 (b) rss-3c type 2 (c) rss-3c type 3

(d) rss-3c type 4 (e) rss-3c type 5 (f) rss-3c type 6

(g) random structures (h) intermediate relaxed structures (i) relaxed structures

Figure 31: Representative GAP-RSS structures from the phosphorus allotropes data set.
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