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Preface
This handbook was written in spring 2023 by Haoran Ni. He is thrilled about all the resources
and free textbooks he can find online, yet getting upset that he always forgets important knowledge
in a month after carefully reading through them. That is why he decided to write such a handbook
to take notes of all the things he considered important in a brief and clear way. Meanwhile, he thinks
structuring and writing down such notes as if he is explaining to somebody else helps him understand
the knowledge better, salute to Prof. Richard Feynman, and makes it easier for him to quickly look
up for equations and theorems in the future. He also hopes that this handbook could be useful to
his friends and colleges in case they want to quickly look up for something related. This handbook
is written by referring to online resources, published textbooks, and only a small part, such as some
comments, detailed derivations and some python codes, comes from Mr. Haoran Ni’s own ideas. So he
wants the readers to know that he did not create all of this, but rather restructured and paraphrased
them. Respect to all the people who shared their knowledge and notes online to make this handbook
possible.
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1 Github workflows
Git is a distributed version control system that keeps track of all the changes in a git repository.
Github is instead a user-friendly software(?) that is built upon git.

1.1 Create a repository
A repository is the folder that we work on, the folder that git will keep track of. Suppose we go to a
folder example_repo in the terminal, then type and enter
git init

Git will automatically create a hidden folder .git inside this folder/repo. Now this folder example_repo
is officially a git repo!

1.2 Stage files
Suppose we just modified the file index.html in a repo, and that was a important modification so that
we want to have some kind of savepoints just like we do in computer games. We use git commit to
create a savepoint. But before that, we need to move the files that we want to commit to the staging
area using

git add <file_names>

If we have a lot of files to commit, then we can simpy call
git add .

to add all the files in the repo to the staging area.

A good habit to have during this process is to call
git status

which shows the modified files, and the staged files. Some people may question that the stage process
is not necessary. But consider the case where we modified several important files, and they separately
corresponds to different features. A clean workflow would be to stage the first feature, commit the
first feature, then stage the second feature and commit the second feature, and so on. The reason why
staging exists is that, sometimes we don’t want all the modified files to be committed.

With all that being said, now we are ready to make a commit!

1.3 Commit a file
Simple, just do

git commit -m 'added index title'

Here - m stands for message, and the message is the quoted sentence. Keep in mind that the message
should be clear and indicative. Do not add meaningless messages.

If we want to check the history of our commits, we can call
git log

Or if we want the output to look clean, we can use
git log --oneline
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1.4 Push a commit
After we make a commit, it only affects our local repo. To publish our local commits to the remote
github repo, we should do

git push

1.5 Summary
The general github workflow is:

• Create a folder on your local machine, which will be used as the repo.

• Go under that folder and call git init.

• Create and modify some files for a certain feature.

• Call git status to check the names of the modified files and staged files.

• Call git add <file_names> to stage the files.

• Call git commit -m 'message' to commit the files.

• Call git log to check the commit history.

• Call git push to publish the commit.

2 Maths, again
2.1 Matrix calculus
2.1.1 Derivative of matrices

Reference: Matrix Calculus.

1. If
y = Ax, (1)

where y is m× 1, A is m× n and is a constant matrix, x is n× 1, then

∂y

∂x
= A. (2)

2. If
α = ωTx, (3)

where α is scalar, ω is n× 1, x is n× 1, then

∂α

∂x
= ωT . (4)

3. If
α = yTAx, (5)

where α is a scalar, y is m× 1, A is m× n, x is n× 1, then

∂α

∂x
= yTA. (6)

5
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∂α

∂y
=

(
∂α

∂yT

)T

(7)

= (Ax)T (8)
= xTAT . (9)

4.F If
α = xTAx, (10)

where α is a scalar, A is n× n, x is n× 1, then

∂α

∂x
= xT (A+AT ). (11)

5. If
y = Ax, (12)

where y is m× 1, A is m× n and is a constant matrix, x is n× 1, then

∂y

∂z
= A

∂x

∂z
. (13)

6. If
α = yTx, (14)

where α is a scalar, ω is n× 1, x is n× 1, and they are all functions of z, then

∂α

∂z
= xT ∂y

∂z
+ yT

∂x

∂z
. (15)

7. If
α = yTAx, (16)

where y is m× 1, A is m× n and is a constant matrix, x is n× 1, then

∂α

∂z
= xTAT ∂y

∂z
+ yTA

∂x

∂z
. (17)

2.1.2 Jacobian matrix

Suppose we have a function f : Rn → Rm, namely this function brings x ∈ Rn to f(x) ∈ Rm. Then the
Jacobian matrix of f is an m× n matrix defined by Jij = ∂fi/∂xj , namely

J =

[
∂f
∂x1

· · · ∂f
∂xn

]
=

 ∇f1
...

∇fm

 =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 , (18)

where ∂f/∂xi are column vectors and ∇fi are row vectors.
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2.1.3 Positive-definite matrix and its friends

Positive definite Given a complex matrix H, it is called positive definite if

R(v∗Hv) > 0 (19)

for any non-zero complex vector v, where v∗ is the complex conjugate transpose of v. For real matrix
the above equation reduces to

vTHv > 0 (20)

for any non-zero real vector v, where vT is the transpose of v.

Positive semi-definite Given a complex matrix H, it is called positive semi-definite if

R(v∗Hv) ≥ 0 (21)

for any non-zero complex vector v, where v∗ is the complex conjugate transpose of v. For real matrix
the above equation reduces to

vTHv ≥ 0 (22)

for any non-zero real vector v, where vT is the transpose of v.

Negative definite and negative semi-definite Just change the > sign to < sign.

For convenience, we will only talk about positive-definite in the following parts, other cases can be
derived accordingly.

2.1.4 Positive-definite for Hermitian and symmetric matrices

For Hermitian matrix H, we have its eigenfunction

H · ~ai = αi ~ai. (23)

It is easy to prove that all ai are real numbers. For an arbitrary vector v, we always have

~v =
∑
i

ci ~ai, (24)

because ai form orthonormal bases. So we have

v∗Hv =
∑
i

∑
j

cicj ~ai
∗H ~aj (25)

=
∑
i

∑
j

cicjαj ~ai
∗ ~aj (26)

=
∑
i

∑
j

cicjαjδij (27)

=
∑
i

c2iαi. (28)

The above result suggests that if H is positive-definite, then all of its eigenvalues αi should be positive.
So we have: For Hermitian/symmetric matrices, they are positive-definite if and only if all
of the eigenvalues are positive.

Because for any complex matrix A (the steps are similar for real matrices), we can always find its
corresponding Hermitian part by doing

AH =
1

2
(A+A†). (29)

We can prove that if the Hermitian part of a complex matrix is positive-definite, then this
matrix is positive-definite. This is a second way of telling if a matrix is positive-definite or not. We
can also prove that the determinant of a positive definite matrix is always larger than 0, det(A) > 0.
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2.1.5 Significance of positive-definite

There are many cases where we meet the mathematical form vTHv. Here we give two examples.

Hessians For a multi-variable function f(x), when we take the Fourier expansion to the second
order,

f(x′) = f(x) + (x′ − x)T∇f(x) + 1

2
(x′ − x)T H(x′ − x) +O(δx3). (30)

We naturally see the form vTHv, and H is called the Hessian matrix of f , which is symmetric. If the
Hessian matrix of a function is positive definite, then this function is convex.

Observable averages in quantum mechanics In quantum mechanics, vTHv is represented as
〈a|H|a〉, which stands for the average of an observable for a certain state. For a positive-definite
observable, the observation will always be positive.

2.2 Calculus of variation
We consider the following problem of finding the optimal ”path” from point a to point b: We denote

Figure 1: Example to introduce Calculus of variation.

the optimal path as f(x), and any random path as y(x). A variation to f(x), or more generally y(x)
is denoted as εη(x), where ε is infinitesimally small, and η(x) is a random function which satisfies
η(a) = η(b) = 0. We denote all possible paths from a to b as a functional, which stands for the
function of a function, F [y]. (A commonly seen functional in machine learning is the entropy H[x] for
continuous variables, because it is the function/integral of the probability distribution p(x). H[x] could
also be written as H[p].)

Apparently, F [y] depends on the function form of y, and reaches its minimum when y(x) = f(x). If
we now focus on the region near the minimal path f(x), and let y(x) = f(x) + εη(x), then for ε = 0,
we should have

∂F [y]

∂ε
|ε=0 =

∂F [f ]

∂ε
= 0. (31)

Generally, F [y] could be written as

F [y] =

∫ b

a

G(y, y′, x)dx. (32)

Therefore, to find the optimal path f(x), we have

∂F [y]

∂ε
=

∫ b

a

∂G(y, y′, x)

∂ε
dx (33)

=

∫ b

a

(
∂G

∂y

∂y

∂ε
+

∂G

∂y′
∂y′

∂ε

)
dx (34)

=

∫ b

a

(
∂G

∂y
η(x) +

∂G

∂y′
η′(x)

)
dx (35)

=

∫ b

a

∂G

∂y
η(x)dx+

∫ b

a

∂G

∂y′
dη(x) (36)
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=

∫ b

a

∂G

∂y
η(x)dx+

∂G

∂y′
η(x)|ba −

∫ b

a

η(x)d

(
∂G

∂y′

)
(37)

=

∫ b

a

∂G

∂y
η(x)dx−

∫ b

a

η(x)
d

dx

(
∂G

∂y′

)
dx (38)

=

∫ b

a

(
∂G

∂y
− d

dx

(
∂G

∂y′

))
η(x)dx (39)

= 0. (40)

Because the above equation must hold for any function η(x), therefore we have
∂G

∂y
− d

dx

(
∂G

∂y′

)
= 0, (41)

which is called the Euler-Lagrange equation. Solving the above equation gives us the optimal path
f(x).

2.2.1 Finding the shortest distance between two points on a Euclidean plane

2.2.2 The maximum entropy distribution of a continuous variable is a Gaussian

2.3 Moments and characteristic functions
2.4 Probability theory
Remember by heart the fundamental rules in probability theory:

• Sum rule: p(X) =
∑

Y p(X,Y ). p(X) is called marginalization probability. The summing out of
another variable is called marginalization.

• Product rule: p(X,Y ) = p(X|Y )p(Y ) = p(Y |X)p(X)

• Sum rule combined with Product rule: p(X) =
∑

Y p(X|Y )p(Y )

•
∑

X p(X|Y ) = 1

• Bayes’ theorem (derived from product rule):

p(Y |X) =
p(X|Y )p(Y )

p(X)
=

p(X|Y )p(Y )∑
Y p(X|Y )p(Y )

(42)

• X and Y are said to be independent if p(X,Y ) = p(X)p(Y ). So for two independent variables,
p(X|Y ) = p(X), p(Y |X) = p(Y ).

prior probability and posterior probability The available probability before we make any ob-
servation is called the prior probability, e.g. there are two boxes and we decide we will select the red
one with a 60% chance, so the prior probability is p(B = red) = 0.6. The probability after we make
observations is called posterior probability, e.g. we observed that an apple is selected from one of
the boxes, then the probability that we selected the red box is now p(B = red|F = apple), which is a
posterior probability. It can be calculated using Bayes’ theorem.

Probability density The probability of a continuous variable x falling into the region (x, x+ δx) is
expressed as p(x)δx, and p(x) is called the probability density of x. Note that it has the inverse unit
of x. We have, in analogous to the discrete version,

• Sum rule: p(x) =
∫
y
p(x, y)dy

• Product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• Beyes’ theorem: p(y|x) = p(x|y)p(y)
p(x) = p(x|y)p(y)∫

y
p(x|y)p(y)

•
∫
x
p(x)dx = 1

• Cumulative distribution function: P (z) =
∫ z

−∞ p(x)dx, which satisfies P ′(x) = p(x)
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Expectation The expectation of a function f(x) where x has a probability distribution of p(x) is
written as

E[f(x)] =
∫
x

p(x)f(x)dx or
∑
X

p(X)f(X). (43)

For multivariate functions, such as f(x, y), it will be indicated on which the expectation is averaged,
e.g. Ex[f(x, y)] will be a function of y.

Conditional expectation It refers to the expectation of a conditional probability distribution

Ex[f(x)|y] =
∫
x

p(x|y)f(x)dx or
∑
X

p(X|Y )f(X) (44)

Variance It is defined as
var[f(x)] = E

[
(f(x)− E[f(x)])2

]
, (45)

which can be simplified as
var[f ] = E[f(x)2]− E[f(x)]2. (46)

Covariance It is defined as

cov[x, y] = Ex,y[{x− E[x]}{y − E[y]}] = Ex,y[xy]− E[x]E[y], (47)

which measures the correlation of two variables. If two variables are independent, then their covariance
is 0. The covariance of the same variable, i.e. two identically sampled variables, is NOT
defined.

The covariance of two vectors is a matrix of the form

cov[x, y] = Ex,y[{x − E[x]}{yT − E[yT ]}] = Ex,y[xyT ]− E[x]E[yT ], (48)

where the average operation is for each element. We can also measure the covariance of the elements
in vector x by calculating cov[x] = cov[x, x].

2.4.1 The frequentist’s interpretation and the Bayesian interpretation

Let’s take polynomial curve fitting as an example. Under the frequentist’s interpretation, the param-
eters w are fixed, it does not have any probability distribution (i.e. we don’t consider p(w|x, t)). And
the probability we write in this case brings us directly to the likelihood function p(t|x,w, β), by which
we maximize to obtain the sum-of-squares error function.

A crucial step that brings us to the Bayesian approach is considering the probability distribution of
the parameters w, taken as a prior probability, p(w|x, t). This is the very term, when multiplied with
the likelihood function, that gives us the regularization term, because the probability distribution
regularizes the range of w.

The key difference between frequentist’s interpretation and Bayesian interpretation is
that there are more than one variable with probability distribution in the latter. For
example, in polynomial curve fitting, under the freq. approach, the only probability is
for the prediction of the target variable, which takes the form of a Gaussian distribution,
and the parameters in the model has no probability distribution, it is fixed! The ignored
complexity of w is reflected on the fact that we need several such training sets to know
the error bar of w.

However, in Bayesian approach, we add the consideration of the probability distribution
of the parameters w, such consideration brings us to the case where we can use the sum
rule and product rule, which only apply when we have several probabilistic variables.
And the following expression applies:

p(t|x, x, t) =
∫

p(t|x,w)p(w|x, t)dw, (49)
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which is just sum rule combined with product rule for continuous variables. The Bayesian
approach could be understood using the following diagram:

Figure 2: Diagram of Bayesian approach

It is pretty like the idea of path integral, where in order to reach the ultimate and only
variable (here is the predicted value t), different paths have to be considered (here is the
different possible values of w).

More detailed coverage is on the way.

2.4.2 The Gaussian distribution

Gaussian distribution, or normal distribution is probably the most important probability distribution
for continuous variables. For a single real-valued variable x obeying Gaussian distribution, the
Gaussian distribution is defined as

N (x|µ, σ2) =
1√
2πσ2

exp
{
− (x− µ)2

2σ2

}
, (50)

where µ is called the mean, σ2 is called the variance, σ is called the standard deviation. We also
define β = 1/σ2, which is called the precision.

Here are some properties of the Gaussian distribution:

•
∫∞
∞ N (x|µ, σ2)dx = 1

• E[x] =
∫∞
∞ xN (x|µ, σ2)dx = µ

• E[x2] =
∫∞
∞ x2N (x|µ, σ2)dx = µ2 + σ2

• var[x] = E[x2]− E[x]2 = σ2

2.5 A bit of information theory, and a bit of statistical mechanics
2.5.1 Entropy from the view of a data scientist

To measure the amount of information contained in an observation x, the quantity h(x) should satisfy
the following properties:

• h(x) measures the ”degree of surprise”, in a way that the information content is 0 if we observe
something that is sure to happen, i.e. h(x) = 0 when p(x) = 1; the information content is the
maximum when we observe something that is very unlikely to happen, i.e. h(x) = max when
p(x) = 0.

• When we have two independent events, the information content of these two is the sum of their
individual information content, i.e. h(x, y) = h(x) + h(y) if p(x, y) = p(x)p(y).
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Therefore, h(x) must be a logarithm function of p(x),

h(x) = − log2 p(x). (51)

The minus sign here is to make sure h(x) is positive. The base of the logarithm could be other numbers,
and h(x) with base 2 has a unit of bits.

Then the average information content of variable x with probability distribution p(x) is

H[x] = −
∑
x

p(x) log2 p(x). (52)

This quantity is called the entropy of the random variable x.

Uniformly distributed variables Now consider we have 8 possible states of x, all having the same
probability 1/8, the entropy of such a distribution is

H[x] = −8× 1

8
log2

1

8
= 3 bits. (53)

Non-uniformly distributed variables Now consider we still have 8 possible states of x, but now
the probability distribution is { 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64}. The entropy is now

H[x] = . . . = 2 bits. (54)

Why is that? Because we can encode each possible state of x using 0, 10, 110, 1110, 111100, 111101,
111110, 111111, the average length of bits is

1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

16
× 4 +

1

64
× 6× 4 = 2. (55)

Note that the encoding can not be shorter because we need to make sure it is always possible to
disambiguate a concatenation of such strings, e.g. 11001110 decodes uniquely to 110, 0, 1110.

The noiseless coding theorem by Shannon The entropy is a lower bound on the number of bits
needed to transmit the state of a random variable.

2.5.2 Entropy from the view of a physicist

Hello, and yes I have a Master degree in physics...So in physics the concept of entropy comes from
statistical physics, when people were trying to figure out all the possible states of particles moving in
a box. This problem could be described as: Suppose we have N particles that we want to randomly
put them into a set of bins (imagine that as different positions in space), and we suppose there are ni

particles in the ith bin. The number of different ways that we can allocate those particles is

W = Cn1

N Cn2

N−n1
Cn3

N−n1−n2
. . . C0

0 (56)

=
N !

n1!(N − n1)!

(N − n1)!

n2!(N − n1 − n2)!

(N − n1 − n2)!

n3!(N − n1 − n2 − n3)!
. . .

0!

0!0!
(57)

=
N !∏
i ni!

. (58)

The entropy is defined as the logarithm of W scaled by N ,

H =
1

N
lnW =

1

N
lnN !− 1

N

∑
i

lnni!. (59)

Now we consider the limit N → ∞ while ni/N are fixed, and use Sterling’s approximation

lnN ! ' N lnN −N, (60)
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then

H =
1

N
lnN !− 1

N

∑
i

lnni! (61)

=
1

N
(N lnN −N)− 1

N

∑
i

(ni lnni − ni) (62)

= lnN − 1

N

∑
i

ni lnni (63)

=

∑
i ni

N
lnN − 1

N

∑
i

ni lnni (64)

= −
∑
i

ni

N
ln ni

N
(65)

= −
∑
i

pi ln pi. (66)

Here pi is the probability of the particle being assigned to the ith bin.

2.5.3 The continuous case - differential entropy

Mean value theorem This theorem tells us that, if we divide x into bins of width ∆, for each bin,
there must exist a value xi in the bin such that∫ (i+1)∆

i∆

p(x)dx = p(xi)∆. (67)

Thus it is always possible to transform the entropy of a continuous variable as

H = −
∑
i

p(xi)∆ ln (p(xi)∆) = −
∑
i

p(xi)∆ ln p(xi)− ln∆. (68)

Taking the limit∆ → 0, and omit the diverging ln∆ term, we naturally have the entropy for continuous
variables

H = −
∫

p(x) ln p(x)dx, (69)

which is called the differential entropy.

2.5.4 Conditional entropy

Now we consider a joint probability distribution p(x, y), which leads to the case of the conditional
entropy.

If we consider the marginal distribution p(x), then

H = −
∫

p(x) ln p(x)dx (70)

= −
∫

p(x, y) ln p(x)dxdy, (71)

where we have used
∫
p(x, y)dy = p(x). Therefore, we see that for joint distribution, if we include 2

(or several) integrated variables, the probability distribution outside the logarithm function should be
the joint distribution.

So the conditional entropy of y given x is

H[y|x] = −
∫

p(x, y) ln p(y|x)dxdy, (72)
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which is just

= −
∫

p(y|x)p(x) ln p(y|x)dxdy (73)

= −
∫

p(y|x) ln p(y|x)dy. (74)

And because p(x, y) = p(x|y)p(y), we naturally have

H[x, y] = H[x|y] +H[y] = H[y|x] +H[x]. (75)

2.5.5 Maximum entropy

Before we introduce the maximum entropy, we want to mention a very important method, which is
called the Lagrange multiplier. It is always used when we want to maximize/minimize a function
under certain constraints.

Suppose we have a function f(x) that we want to maximize, and there is a constraint for x such that
g(x) = 0, then we just maximize the following function w.r.t. x

h(x) = f(x) + λg(x), (76)

where λg(x) is called the Lagrange multiplier. After this step we will have x containing λ. λ can be
calculated by substituting x back to g(x) = 0.

Discrete case Under the discrete case, we want to maximize

H̃ = −
M∑
i

p(xi) ln p(xi) + λ(

M∑
i

p(xi)− 1). (77)

Taking the derivative of the above function w.r.t. each p(xi) and substituting p(xi) back to
∑

i p(xi) =
1 to solve λ, we obtain

p(xi) =
1

M
. (78)

Therefore, for the discrete case, the distribution that has the highest entropy is the uniform distribution.
And the corresponding maximum entropy is

Hmax = lnM. (79)

Continuous case In order to better define the problem, we have to make sure the first and second
moments of p(x) should be constrained. ∫ ∞

−∞
p(x)dx = 1, (80)

∫ ∞

−∞
xp(x)dx = µ, (81)∫ ∞

−∞
(x− µ)2p(x)dx = σ2. (82)

So we have to maximize the following functional w.r.t. p(x)

H̃ = −
∫ ∞

∞
p(x) ln p(x)dx+λ1

(∫ ∞

−∞
p(x)dx− 1

)
+λ2

(∫ ∞

−∞
xp(x)dx− µ

)
+λ3

(∫ ∞

−∞
(x− µ)2p(x)dx− σ2

)
.

(83)
Taking the derivative of H̃ w.r.t. p(x) gives

∂H̃

∂p(x)
= −(ln p(x) + 1) + λ1 + λ2x+ λ3(x− µ)2 = 0. (84)
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Note that here we are taking the derivative of H̃ w.r.t. to a certain x, so the integral disappears.

We obtain
p(x) = eλ3(x−µ)2+λ2x+λ1+1. (85)

Substituting this back to the constraints, we obtain

p(x) =
1√
2πσ2

exp− (x− µ)2

2σ2
. (86)

We see that the probability that maximizes the differential entropy is the Gaussian!

2.6 Message passing

3 Before neural networks
Root mean square error (RMSE) It is defined by

ERMS =

√∑
n(yn − tn)2

N
, (87)

where yn are the predicted values, and tn the target values. The N in the denominator here allows us
to compare the prediction errors on datasets with different sizes. The square root ensures ERMS is on
the same scale and same unit with the target value.

Overfitting Overfitting happens when the model has too many parameters yet the dataset has too
small training points. Overfitting can be solved by either applying regularization to the cost function,
or incease the size of the training set, or reduce the complexity and flexibility of the model. Roughly
speaking, the number of training data should approximately be no less than 5 - 10 times of the number
of parameters in the model. In the case of overfitting, the weights w are very large, in a sense that a
slight change of the input parameter could cause a large change in the output. So for the regularization
we usually use λ

2 ‖w‖2 to suppress w. The particular case of a quadratic regularizer is called ridge
regression.

3.1 Support vector machine
Support vector machines (SVMs) are supervised machine learning models that can do classifications
by maximizing the margins of hyperplanes.

A typical illustration is

Figure 3: Maximum-margin hyperplane and margins for an SVM trained with samples from two classes.
Samples on the margin are called the support vectors.

The key here is the construction of a hyperplane of the form

f(x) = wx + b, (88)
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which is extremely similar to a linear regression model. But the key difference is that, in SVM, f(x)
is constructed to be as far from the data points as possible (in order to maximize the margin). While
in linear regression, f(x) is constructed to be as close to all data points as possible.

3.2 Linear regression and ridge regression
To better illustrate the definitions, we here consider the problem where we want to find the relations
between students’ final grades and their ages, genders, homelands and wealth.

In this case, each student is an observation, a student’s age, gender, homeland and wealth are called
independent variables/features. It could be written into a feature matrix or design matrix Φ of size
N ×M , where N is the number of samples, or here we meant the number of students, and M is the
number of features, here M = 4. Mathematically,

Φ(~x) =


φ1(x1) φ2(x1) ... φM (x1)
φ1(x2) φ2(x2) ... φM (x2)

... ... ... ...
φ1(xN ) φ2(xN ) ... φM (xN )

 . (89)

A student’s final grade is called dependent variable/response. The real values of students’ final grades
are called target values, denoted as ~t. Note that ~t is a vector of size N ×1. The predicted, or estimated
values of the target values are denoted as ~y, which is also of size N × 1.

Now, the regression task is simply to find the weights ~w of the linear model,

yn =

M∑
i

wiφi(xn), (90)

or
~y(~x) = Φ(~x)~w, (91)

that minimize the loss function

L =
1

2N

N∑
i

(yi − ti)
2 +

λ

2

M∑
i

w2
i (92)

=
1

2N
‖~y − ~t‖2 + λ

2
‖~w‖2. (93)

The first term in the above equation is the conventional least square loss, the second term is the penalty
term to prevent the model from overfitting. Ridge regression refers to the linear regression with the
penalty term in the loss function.

Linear regression model is analytically solvable, by taking the first order derivative of the loss function
with respect to ~w, and set it to zero, then we have the expression for the optimized ~w.

∇~wL =
1

N
(Φ~w − ~t)TΦ+ λ~wT = 0, (94)

λ~wT = − 1

N
(Φ~w − ~t)TΦ, (95)

λ~w = − 1

N
ΦT (Φ~w − ~t), (96)

λ~w = − 1

N
ΦTΦ~w +

1

N
ΦT~t, (97)

(NλI+ΦTΦ)~w = ΦT~t, (98)

~w = (λ′I+ΦTΦ)−1ΦT~t, (99)
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where we have used (AB)T = BTAT , and λ′ = Nλ. One thing to note is that, from Eq.(94) to Eq.(95),
we take the transpose of some matrices. Because, the derivative of Φ~w w.r.t. ~w is Φ, which is of size
N ×M , therefore the matrix to the left of Φ must have N columns, so we have to take the transpose
of (Φ~w − ~t).

There may be doubts that how can we be sure we reach the minimal point by taking the derivative
to zero, it is also possible that we reach the maximal points. Good question! To erase this doubt, we
take the second derivative of the loss function

∇2
~wL =

d

d~w
(ΦTΦ~w − ΦT~t+ λ~w) = ΦTΦ+ λ = ‖Φ‖2 + λ, (100)

which is valid.

Reminder: check positive definite matrix, semi positive definite matrix etc....

There are some commonly used linear algebra operations here, such as (A + B)T = AT + BT and
(AB)T = BTAT . I put them here just in case I forget them AGAIN in the future. And keep this in
mind, as long as the expression is still valid, there is no change if we take the transpose of all the terms
in that expression.

3.3 Kernel method
3.4 Cross validation
See this webpage. k-fold cross validation is also introduced.

3.5 The coefficient of determination R2
See this webpage for R2 score. It is also implemented in sklearn. R2 = 1 means the model is perfectly
accurate, R2 = 0 means the model is purely flat and is learning nothing. R2 could be negative because
the model could be arbitrarily bad.

4 Neural networks
4.1 Perceptron
The very elementary version of a neuron in neural networks resembles perceptron, which takes binary
inputs and yields binary outputs.

Figure 4: Perceptron

The algebraic expresson of a perceptron is

y =

{
0 if

∑
i ωixi + b ≤ 0

1 if
∑

i ωixi + b > 0
, (101)

where ω are weights, and b is the bias.
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4.2 Sigmoid neurons
When we talk about learning, we are in fact referring to the process of adjusting weights and biases
in the neural network so that the cost function is minimized. This is achievable only when we have
continuous cost functions. To be more specific, the weights are biases are optimized as

ω′ = ω − η
∂C(ω, b)

∂ω
, (102)

b′ = b− η
∂C(ω, b)

∂b
, (103)

where C(ω, b) is the cost function, it’s variables are weights and biases, and η is the learning rate.
Following Eq.(102) and Eq.(103), we can always make sure that the cost function C will decrease once
ω and b are stepped.

The problem with perceptrons is that, no matter what the form of the cost function is, it will always
be discrete because the output is discrete. So we are not sure to which direction should the parameters
of the model be adjusted. That is why we introduce sigmoid neurons.

Sigmoid functions are functions with S-shape as below.

Figure 5: Sigmoid function, using logistic function here as an example

A commonly used sigmoid function is the logistic function, which is

σ(x) =
1

1 + e−kx
, (104)

where k is called the growth rate. The logistic function gives us a satisfying smoothed version of the
Heaviside step function, and it is easy to prove that, as k → ∞, the logistic function approximates
the step function.

The structure of a sigmoid neuron is shown in Fig.(6). In this case the activation function is just
the logistic function. For perceptrons, the activation function is the Heaviside step function.

Figure 6: Sigmoid neuron

Now we have continuous outputs, we are ready to introduce the overall structure of neural networks.
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4.3 Structure of neural networks
Here is the overrall structure of neural networks:

Figure 7: Labels of neural network. We denote the index of each layer in the grey box above. Note
that the count starts from 0, respecting Python indexing.

If we zoom in into the l-th layer of the NN,

Figure 8: Mechanism of neural networks. σ(x) is the sigmoid function, or other activation functions.

So for a NN with L layers (L + 1 layers if we count the input layer), and nl neurons in each layer,
l = 0, 1, 2, · · · , L, we have the number of parameters

Nweight =

L∑
l=1

nl · nl−1, (105)

Nbias =

L∑
l=1

nl, (106)

Ntotal =

L∑
l=1

(nl · nl−1 + nl) =

L∑
l=1

nl(nl−1 + 1). (107)

19



4.4 Back propagation
4.4.1 Gradient descent and stochastic gradient descent

Previously we mentioned that in order to minimize the cost function C(ω, b), we have

∆C =
∂C

∂ω
∆ω +

∂C

∂b
∆b, (108)

if we update ω and b as

ω′ = ω − η
∂C

∂ω

∣∣∣∣
ω

→ ∆ω = −η
∂C

∂ω

∣∣∣∣
ω

, (109)

b′ = b− η
∂C

∂b

∣∣∣∣
b

→ ∆b = −η
∂C

∂b

∣∣∣∣
b

, (110)

where η is the learning rate, and the derivative is evaluated at its original ω and b values. Then we
always have

∆C ≤ 0. (111)

This is called gradient descent. Note that for practical training, the cost function C(ω, b) is the sum
of all training samples, namely,

∑N
i Ci(ω, b), where N is the size of the training set. The optimization

should actually go as

ω′ = ω − η

N∑
i

∂Ci(ω, b)

∂ω
, (112)

b′ = b− η

N∑
i

∂Ci(ω, b)

∂b
. (113)

It turns out that this algorithm is not efficient,especially for large training sets. That is why we
introduce stochastic gradient descent (SGD).

For SGD, Instead of calculating the derivative of the cost function for all the training samples and
update the parameters once, we first calculate a subset of the training set, which is called a mini-
batch, and then update the parameters. Then we take another mini-batch, calculate the derivative
of the cost function, update the parameters; change to another mini-batch, calculate the derivative of
the cost function, update the parameters and so on. Once we have scanned through the training set
once, one epoch is finished. For example, we will update ω using SGD as

ω′ = ω − η
∑

batch 1

∂Ci(ω, b)

∂ω

∣∣∣∣
ω

, (114)

ω′′ = ω′ − η
∑

batch 2

∂Ci(ω, b)

∂ω

∣∣∣∣
ω′
, (115)

ω′′′ = ω′′ − η
∑

batch 2

∂Ci(ω, b)

∂ω

∣∣∣∣
ω′′

, (116)

· · · · · · (117)

SGD is more efficient than GD because it has updated the parameters several times for one iteration
through the training set, even though the descent for each mini-batch may not be in the most optimal
direction, it turns out that the general direction is correct (for most of the time). And after several
such descents we reach to the optimal point quicker than GD.

4.4.2 Back propagation algorithm

Now the key task is to calculate ∂C/∂ω and ∂C/∂b. We introduce back propagation to help us
quickly calculate the derivatives without performing a lot of extra calculations through the net.
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Figure 9: Different kinds of gradient descent.

The Hadamard product Hadamard product refers to the element-wise production of two tensors,
and is denoted here as ∗, in agreement with the notation in Python. For example, 1

2
3

 ∗

 1
2
3

 =

 1
4
9

 . (118)

Error We first define the error δlj of the j-th neuron in l-th layer as

δlj ≡
∂C

∂zlj
. (119)

This quantity can be understood as how much the cost function will change once we change zlj a little
bit, and yes, this quantity is the error in the term error back propagation. We could also work with,
for example, ∂C/∂alj , but defining the error as Eq.(119) gives simpler mathematical formulation, so
we will stick to this working flow.

With that being said, the back propagation is

δLj =
∂C

∂aLj
σ′(zLj ) δL =

∂C

∂aL
∗ σ′(zL)

δlj =
∑
i

ωl+1
ij δl+1

i σ′(zlj) δl = (ωl+1)T δl+1 ∗ σ′(zl)

∂C

∂blj
= δlj

∂C

∂bl
= δl

∂C

∂wl
jk

= al−1
k δlj

∂C

∂wl
= δl(al−1)T

where the left column is the element-wise expression, and the right column is the tensor expression.
Namely,

δl =


δl0

δl1
...

 , aL =


aL0

aL1
...

 ,
∂C

∂al
=


∂C
∂al

0

∂C
∂al

1

...

 , σ′(zl) =


σ′(zl0)

σ′(zl1)
...

 , (120)
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ωl =


ωl
00 ωl

01 · · · ωl
0,nl−1

ωl
10 ωl

11 · · · · · ·
· · · · · · · · · · · ·
ωl
nl,0

ωl
nl,1

· · · ωl
nl,nl−1

 . (121)

ωl is of the size (nl + 1, nl−1 + 1). The labels of ω here is in accordance with the ωout,in label. From
the above formulae we can summarize the following steps for back propagation (All of these are better
implemented in Python using the tensor version):

• Forward propagation: Feed the values forward through the net, and record the values of each
neuron of this pass. The initial weights are random numbers.

• Calculate output error: The output error can be easily calculated because the form of the
cost function is known. For example, for the quadratic cost function, the output error is simply
δL = (aL − t) ∗ σ′(zL), where t is the vector of target values.

• Error back propagation: Back propagate the error using δl = (ωl+1)T δl+1 ∗ σ′(zl).

• Calculate the derivatives: Calculate the derivatives using ∂C
∂bl

= δl and ∂C
∂wl = al−1(δl)T .

• Update the parameters.

• Next batch/epoch starts...

The proof the these equations are well written in the book “Neural networks and deep learning”, please
refer there for detailed explanations.

Saturated neurons From the four equations for back propagation we see that when the derivative
of the activation function is low, i.e. the activation value of the logistic function is close to either 1
(high activation) or 0 (low activation), the derivative of the cost function will be small, which means
that the parameters will evolve, or learn, slowly. So high or low activation neurons are called saturated
neurons.

As a result, there will be cases where we use other activation functions and cost functions to avoid this
learning slow-down, as will be discussed below.

4.4.3 Activation versus weighted sum

Before we introduce cross-entropy, there are some comments to be made. A natural question is, why
do we define ∂C/∂z as the error? Why not using ∂C/∂a?

Well, it is actually equivalent to use either of them, but in the book they mentioned that defining the
error using weighted sum is mathematically simpler, in a sense it gives shorter equations. But if we do
some simple math and define a new error using activation

ζli =
∂C

∂ali
, (122)

then we can easily prove
δli = ζli σ

′(zli), (123)

then the back propagation algorithm can be thus rewritten as

ζL =
∂C

∂aL
(124)

ζl = (ωl+1)T · ζl+1 ∗ σ′(zl+1) (125)
∂C

∂bl
= ζl ∗ σ′(zl) (126)

∂C

∂ωl
= ζl ∗ σ′(zl) · (al−1)T (127)
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Yeah, defining the error as ∂C/∂z does make the equations a bit more simpler...Anyways, there is no
special reason for not using the activation in the definition of error other than simper equations, and
we will see in the future that using ζ to represent back propagation actually makes it more clear in
convolutional neural networks.

4.5 Cross-entropy (cost function)
A intuition for learning is that when the mismatch between the target value and the predicted value
is large, the model should learn more quickly. For quadratic cost function

C =
1

2n

∑
i

|| t− aL ||2, (128)

where the summation is over all training samples indexed as i, this is indeed the case because
∂C

∂aL
=

1

n

∑
i

(aL − t). (129)

But in δL = ∂C/∂aL ∗ σ′(zL), there is another term σ′(zL) affecting δL as well, and tend to be very
small when the predictions are saturated, i.e. aL ≈ 0 or 1. (We consider the target values to be within
[0, 1] here).

In order to remove this term, we carefully choose the cost function such that σ′(zL) will not appear
when calculating δL, and that is corss-entropy.

C = − 1

n

∑
i

[
t ln aL + (1− t) ln (1− aL)

]
. (130)

This is a valid cost function because

• It is non-negative if the target values and predicted values are within the range [0, 1].

• It is minimized when aL = t.

Now we have
∂C

∂aL
= − 1

n

∑
i

(
t

aL
− 1− t

1− aL

)
(131)

= − 1

n

∑
i

t− t ∗ aL − aL + aL ∗ t
aL ∗ (1− aL)

(132)

= − 1

n

∑
i

t− aL

aL ∗ (1− aL)
. (133)

Using the property of the logistic function σ′(z) = σ(z) ∗ [1− σ(z)], we have

δL =
∂C

∂aL
∗ σ′(zL) (134)

= − 1

n

∑
i

t− aL

aL ∗ (1− aL)
∗ σ(zL) ∗ [1− σ(zL)] (135)

= − 1

n

∑
i

t− aL

aL ∗ (1− aL)
∗ aL ∗ (1− aL) (136)

=
1

n

∑
i

(aL − t). (137)

Using cross-entropy as the cost function, we manage to make the model learn faster when the mismatch
is large. But be noted that, this only works when the activation function of the output neurons is
the sigmoid function (and softmax, as we will see later). If we use a linear function as the activation
for the output neurons, namely a′(zL) = const, there is no need to use cross-entropy. Also note that
cross-entropy only improves the situation at the output layer (sure, because we only change the form
of the cost function, which only affects the output layer), for neurons living in hidden layers, the
optimization still suffers from saturation problem.
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4.6 Softmax (output neurons)
Softmax output neuron is another type of neuron using the softmax function as the activation function.
For softmax output layer, we still have the weighted inputs zLj =

∑
k ω

L
jka

L−1
k + bLj , but the activation

is now

aLj =
ez

L
j∑

k e
zL
k

. (138)

It has the following properties:

• It is normalized. So whenever we can interpret the output as probability distribution, softmax
comes in handy.

• It has the same derivative property as sigmoid function: a′(z) = a(z)(1−a(z)), so the formalism
of error back propagation using cross-entropy cost can be easily copied here.

a′Lj =
∂aLj
∂zLj

(139)

=
ez

L
j
∑

k e
zL
k − (ez

L
j )2

(
∑

k e
zL
k )2

(140)

=
ez

L
j∑

k e
zL
k

− (
ez

L
j∑

k e
zL
k

)2 (141)

= aLj − (aLj )
2 (142)

= aLj (1− aLj ). (143)

In summary, the biggest advantage of using softmax in the output layer is its probabilistic interpreta-
tion, and it can be combined with cross-entropy to solve the problem that the learning is slow when
the output neurons are saturated.

Why is it called softmax? Consider a general case, and c → ∞,

a(zj) =
ec·zj∑
k e

c·zk
. (144)

So
a(zj)

a(zk)
= ec·(zj−zk). (145)

Suppose zj is the dominant term, namely zj is positive and large and thus a(zj). All other terms will
be infinitely small compared with a(zj) when c → ∞. So here a(zj) selects the maximum output,
giving a probability infinitely close to 1, all other minor terms are infinitely close to 0. By softmax,
we mean that a(z) still gives a probabilistic output based on the value of zj , but it is softer in a sense
that all other minor terms also have finite values.

4.7 Regularization
Here is the summary of different methods to reduce overfitting:

• Reduce the number of parameters in the model.

• Increase the size of the training set. (such as creating more images by slightly rotating the
original images)

• Use regularization methods. (such as L1 regularization, L2 regularization, dropout, momentum
gradient descent, etc.)

Let’s talk about the third point, regularization. The regularization in neural networks are done pretty
much the same way as Sec. 3.2 ridge regression. Namely, we add a regularization term to the original
cost function C0.
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4.7.1 L2 regularization

For example, the most used regularization is L2 regularization,

C = C0 +
λ

2n

∑
ω

ω2, (146)

where λ is known as the regularization parameter, and n is the size of the training set. By adding
this term, we impose penalty on large weights, so that small weights are favored. (Large weights make
the model less robust to small changes in inputs.)

Using L2 regularization, the derivative of the cost function is now

∂C

∂ω
=

∂C0

∂ω
+

λ

n
ω, (147)

∂C

∂b
=

∂C0

∂b
. (148)

So the updating scheme for the weights and biases is simply

ω′ = ω − η
∂C

∂ω
= ω − η

∂C0

∂ω
− ηλ

n
ω = (1− ηλ

n
)ω − η

∂C0

∂ω
, (149)

b′ = b− η
∂C0

∂b
. (150)

In this case, L2 regularization is also called weight decay due to the 1− ηλ/n coefficient. Note that
the back propagation algorithm is not affected.

4.7.2 L1 regularization

The cost function using L1 regularization is written as

C = C0 +
λ

n

∑
ω

|ω|. (151)

The derivative of the regularized cost function is

∂C

∂ω
=

∂C0

∂ω
+

λ

n
sgn(ω), (152)

where

sgn(ω) =


1 if ω > 0

0 if ω = 0

−1 if ω < 0

. (153)

In this case the updating scheme for the weights is

ω′ = ω − ηλ

n
sgn(ω)− η

∂C

∂ω
. (154)

Compared with L2 regularization, the weights in L1 regularization shrink in a constant amount toward
0, while the weights in L2 regularization shrink proportionally to ω.

4.7.3 Dropout

The illustration of the dropout method is shown in Fig.10. The steps are:

• Temporarily deactivate half the hidden neurons in the network, as shown in Fig.10(b).

• Forward-propagate the inputs through the modified network.

• Back propagate the errors through the modified network.

• Update the parameters of the modified network.
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• Repeat the above steps for a mini-batch.

• After a mini-batch, restore the network and select another random half of hidden neurons to
deactivate.

• Do the forward prop, back prop and update for the newly modified network’s parameters for
another mini-batch.

• The loop goes on until all mini-batches are done.

• When we finish the training and restore the full network, we have to halve the weights outgoing
from the hidden neurons because we use only half of them during the training.

(a) Before dropout. (b) Dropout.

Figure 10: Dropout method

Different from L2 or L1 regularization where we modify the cost function, for dropout method we
modify the structure of the network itself. The regularization could be understood as:

• Averaging over several networks to reduce overfitting.

• or, by taking out some neurons, we expect our model to be robust to the loss of individual piece
of evidence, so that it is more regularized.

Dropout has been very helpful in training large, deep neural networks.

4.8 Weights initialization
Consider the weighted inputs zlj =

∑
k ω

l
ka

l−1
k +bj . Previously we initialize the weights using Gaussians

with mean 0 and variance 1, which means that zlj will have variance nin, where nin is the number of
input weights associated with zlj . Recall that the variance of a sum of independent random variables is
the sum of the variances of the individual random variables, and variance is the square of the standard
deviation.

If the number of input weights is, say, 10, then the variance of zlj is 10, and the value of zlj could go
easily large such that σ(zlj) is close to 0 or 1, i.e. that neuron is saturated.

As can be seen from back propagation algorithm, saturated neurons will slow down the learning of the
parameters. We can adress the learning slow-down problem of the output layer by alternating the cost
functions, e.g. the cross-entropy cost function. However, that will not solve the learning slow-down
for hidden layers.

So we should initialize the weights using Gaussians of mean 0 and variance 1/nin, or 1/(nin + 1) if you
also want to consider the bias, so that the variance of zlj is still 1, and most neurons will not saturate.
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4.9 The vanishing/exploding gradient problem
The vanishing/exploding gradient problem is one of the many reasons that deep neural networks are
hard to train. To see why that comes, we recall the back propagation algorithm

δL =
∂C

∂aL
∗ σ′(zL)

δl = (ωl+1)T δl+1 ∗ σ′(zl)

∂C

∂bl
= δl

∂C

∂wl
= δl(al−1)T

If we consider the standard gradient descent using sigmoid neurons, here is the derivative of the sigmoid
function So σ′(z) is always smaller than ∼ 0.25. And since we initialize the weights with Gaussians

Figure 11: Derivative of the sigmoid function

of variance 1, so in general |ω| < 1, which means that for each layer forward, δl will be at least 0.25
of the outer layer, which means that ∂C/∂ωl will be smaller. So in deep neural networks, the weights
in the first several layers learn extremely slowly compared with outer layers. This is the vanishing
gradient problem, as shown in Fig.(12).

Figure 12: Demonstration of the vanishing gradient problem

On the other hand, if the weights are set by chance very large, e.g. |ω| > 100, then as the error back
propagates, it gets larger and larger, so do ∂C/∂ωl. In this case we have the exploding gradient
problem.

In summary, the gradients, i.e. the learning speed ∂C/∂ω, in deep neural networks tend to be very
unstable, either vanishing or exploding gradient can be summarized as the unstable gradient prob-
lem. And we have ways to ameliorate this problem by altering some components in standard gradient
descend, e.g. we can use ReLU activation instead of sigmoid activation.
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4.10 Miscellaneous
4.10.1 Hessian optimization

Using Taylor’s expansion, the cost function can be approximated near a point ω by

C(ω +∆ω) = C(ω) +
∑
j

∂C

∂ωj
∆ωj +

1

2

∑
jk

∆ωj
∂2C

∂ωj∂ωk
∆ωk + · · · , (155)

which could be written as

C(ω +∆ω) = C(ω) +∇CT ·∆ω +
1

2
∆ωTH∆ω + · · · (156)

where H is called the Hessian matrix

Hjk =
∂2C

∂ωj∂ωk
. (157)

If we omit the higher order terms of Eq.(156), and consider the terms to the second order

C(ω +∆ω) = C(ω) +∇CT ·∆ω +
1

2
∆ωTH∆ω, (158)

then we let

∂C(ω +∆ω)

∂∆ω
= ∇CT +

1

2
∆ωT (H +HT ) (159)

= ∇CT +∆ωTH = 0, (160)

where we have used the symmetric property of H. So

∆ω = −H−1∇C. (161)

By updating ω in this way, we are able to minimize the cost function as well (if H is positive-definite),
and there are theories showing that Hessian optimization converges to the minimum in fewer steps
than standard gradient descent. There are also back propagation algorithms used to calculate the
Hessian.

However, one big drawback to calculating the Hessians comes from its size, because we need to square
the number of weights are parameters!

4.10.2 Momentum gradient descent

For momentum gradient descent, the updating scheme for the parameters is

ω′ = ω + v′, (162)

v′ = µv − η∇C, (163)

where µ is the hyper-parameter called the momentum coefficient, which controls the velocity or
momentum of gradient descent (though it is not really the momentum in physics). To be more specific,

v0 = 0 ω0 = ω0

v1 = µv0 − η∇C|ω0
ω1 = ω0 + v1

= −η∇C|ω0
= ω0 − η∇C|ω0

v2 = µv1 − η∇C|ω1 ω2 = ω1 + v2

= −µη∇C|ω0 − η∇C|ω1 = ω0 − (1 + µ)η∇C|ω0 − η∇C|ω1

v3 = µv2 − η∇C|ω2 ω3 = ω2 + v3

= −µ2η∇C|ω0
− µη∇C|ω1

− η∇C|ω2
= ω0 − (1 + µ+ µ2)η∇C|ω0

− (1 + µ)η∇C|ω1
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− η∇C|ω2

v4 = µv3 − η∇C|ω3 ω4 = ω3 + v4

= −µ3η∇C|ω0
− µ2η∇C|ω1

− µη∇C|ω2
− η∇C|ω3

= ω0 − (1 + µ+ µ2 + µ3)η∇C|ω0

− (1 + µ+ µ2)η∇C|ω1

− (1 + µ)η∇C|ω2

− η∇C|ω3

· · · · · · · · · · · ·

If µ = 0, we go back to the standard gradient descent scenario, and the descent will not build up, so
we have full friction here. If µ = 1, we see that for each step, the gradient of the previous step will
add upon itself, so we have a strong velocity building up from previous steps, so µ = 1 corresponds to
no friction at all.

The advantage of using momentum method is that we exploit the information from previous points
to help us descend quicker to the minimal point, as if we gain momentum/velocity when we gradient
descend.

The drawback of this method is that, if the function space is changing quickly, we may easily overshoot
the minimal point. Because for rapidly changing function space, the direction information of the
gradient from previous points may be irrelevant to what we are at right now. In this case, we prefer a
small value of µ.

The momentum method also has somewhat the effect of learning rate scheduling. Because as we
descend down the hill, the learning rate of those initial steps are large, and that of the recent steps
towards the minimum are small.

4.10.3 Other models of neuron/activation

tanh Tanh neuron replaces the sigmoid function by the hyperbolic tangent function, given by

tanh (ω · x+ b), (164)

where
tanhx =

ex − e−x

ex + e−x
. (165)

Note that tanh function does not have the derivative property of sigmoid function, therefore the

Figure 13: Tanh function

cross-entropy cost will not solve the learning slow-down problem for tanh neurons.

ReLU ReLU stands for rectified linear unit. It is defined as

max (0, ω · x+ b). (166)

For ReLU neurons, there is no such problem as learning slow-down, because the derivative of this
activation will be a constant regardless of the value of the weighted inputs, as long as they are positive.
On the other hand, the learning completely stops if the weighted input is negative.
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Figure 14: ReLU function

Which one is better? There is no universal conclusion on which activation function to use for
which kind of problem. But there are some heuristics on which one performs (maybe slightly) better
than others.

4.10.4 On optimizing the hyper-parameters

To get an NN that is learning non-trivial signal from a training set for the first time can sometimes be
extremely challenging, if we don’t know what are the optimal hyper-parameters. Below are some tips
on the general strategy:

• Fast experimentation is the key! Use only a very small subset of the training data to do
experimentation! If we are learning well, move on to the full data set.

• Increase the frequency of monitoring! Do not only look at the final overall accuracy, but
plot the learning curve every, say, 5 epochs.

• Using a small subset of validation data to check the accuracy. Again, the smaller the
data set, the faster the calculation. Avoid using test data to check the performance when tuning
hypers, unless you do not have validation data.

• Guess, trial, error, adjust.

• Grid search! If hand-optimization gives you no clue, try doing grid search for the hypers using
small data sets.

• In practice, there are relationships between the hypers. You may experiment with η, feel that
you got it just right, then start to optimize for λ, only to find it is messing up your optimization
for η. In practice, it helps to bounce backward and forward, gradually closing in good values.

Here are some tips on optimizing specific hypers:

• Learning rate η: To optimize learning rate we need to plot the learning curve (cost vs epochs)
of the training set. 1. Give a random guess of the learning rate, then plot the learning curve of
the training set. 2. If the learning curve is flat, reduce η. 3. If the learning curve is decreasing
but has oscillations (overshooting at the minimal) when converging, reduce η. 4 The optimal η
should give a smoothly converging learning curve.

• Training epochs: Use early stopping to determine the number of epochs. For example, if the
classification accuracy of the validation data has no improvement for 10 consecutive epochs,
terminate.

• Regularization parameter λ: Start with no regularization. Optimize η first. When you
observe overfitting, the suggested value for the regularization parameter λ is such that 1− ηλ/n
is of order 0.001 ∼ 0.01.

4.10.5 Others

Early stopping Once the accuracy on the validation data has saturated, e.g. no improvement in
10 epochs, we stop training.
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skip-layer A two-layer (1 input, 1 hidden, 1 output) neural network with a skip-layer means the
hidden layer will act as the skip-layer, and the information will go directly from the input layer to
the output layer. Skip-layer can be understood as a linear transformation layer, such that successive
linear transformations can be combined as one linear transformation, thus having the name ”skip”.
Any sigmoidal hidden layer can mimic the behavior of skip-layer by using small weights. Because the
inputs will be centered near 0, where the behavior of the sigmoid function is linear.

Neural networks are also called universal approximators.

”A two-layer network with linear outputs can uniformly approximate any continuous func-
tion on a compact input domain to arbitrary accuracy provided the network has sufficiently
large number of hidden units.”

There is some confusion regarding the terminology to count the number of layers. A 3-layer network
(1 input layer, 1 hidden layer and 1 output layer) can also be called a single-hidden-layer network.
But we will call it a two-layer network, for the consideration that the number of layers of the adaptive
weights are important for the neural network.

5 Convolutional neural networks

Figure 15: Structure of convolutional neural networks[2]

5.1 What is convolution?
5.2 Structure of CNN
The structure of CNN is very different from the fully connected neural networks introduced before,
in a sense that CNN is more adapted to two dimensional images. For the following subsections, we
should think of the input layer, the convolution layer and the pooling layer as two dimensional layer,
and change our indices to two dimension as well.

5.2.1 Input layer

Different from fully connected neural networks where we switch the image into an one dimensional
vector as the input vector, in CNN we keep the image as two dimensional as it was. As shown in
Fig.(16).

5.2.2 Convolutional layer

The convolution layer is formed by convolving the local receptive field with the filter/kernel, and
input to an activation function. The local receptive field is the local field (that 5 × 5 pixels in
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Figure 16: Input layer in CNN

Fig.(17)) from the input layer, the kernel, or filter, are the weights associated with each pixel in the
local receptive field.

Figure 17: Convolution of the local receptive field with the kernel/filter

For each convolutional hidden layer, the weighted inputs are shown in Fig.(18). Note that we still
apply activation functions in the convolutional hidden layer. The expression for the activation in the
convolutional hidden layer is

acij = σ(zcij) = σ

(
bc +

∑
m=0

∑
n=0

ωc
m,nxi+m,j+n

)
, (167)

where the superscript c stands for convolution layers, zcij is the i, j-th weighted input, m,n are indices
for the local receptive field, note that the counting starts from 0. Note that for each feature map we
only have 1 bias. Namely b is optimized along with the specific kernel we used. Note that here we take
the default stride = 1.

In Fig.(17), each time we move 1 pixel to the next receptive field, but sometimes a different stride
length is used, which is a hyper-parameter that could be optimized.

For each convolutional hidden layer, or feature map, the weights are shared. Namely for each
receptive field going into the same feature map, we use the same kernel to convolve. For different
feature maps in the same batch (as shown in Fig.(19), in practice we use different kernels to create
many feature maps in one convolutional layer), we use different kernels, with the aim to learn different
features from the input images. From this perspective, different kernels are like different feature
extractors, and we will use them to determine if a certain feature is existent anywhere in the input
image.

5.2.3 Padding[1]

One problem with standard convolution is that when we stride through the input image, the pixels at
the corners and on the edges will naturally be sampled less than pixels near the center, e.g. in Fig.(20)
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Figure 18: Mechanism of the convolutional hidden layer. a stands for activation function. b stands for
biases of the convolutional hidden layer. Or you could think of b as another parameter of the kernel.

Figure 19: We create many feature maps in one convolutional hidden layer

the pixels at the corners will be sampled only once, but the center pixel will be sampled nine times.

This leads to the result that the extracted feature maps contain less information of pixels at the corners
and edges, and could forbid us from constructing deeper networks. As a solution to this problem, we
can manually add pixels of value 0 around the original input images to increase their sizes, so that
pixels at corners and edges are sampled as frequently as center pixels. This is called padding.

Valid padding No padding at all.

Same padding Pad the input image such that the feature map is of the same size as the original
input image. Yes, sometimes we want to keep the size.

5.2.4 Pooling layer

Pooling layers are used immediately after convolutional layers to further condense the information
from convolutional layers. Basically we first select small regions from the convolutional layers, then
condense the values in some ways, such as max pooling, average pooling, L2 pooling, etc. The size of
the step that we move forward to the next selected region is also called stride, the default value is
usually the size of the region, namely there is no overlap between those regions.

Max pooling In max pooling, we first select each, say, 2×2 region from the convolutional layer, and
let the maximum value of those 4 neurons to be the value of the neuron in the pooling layer. Namely,

apij = Maxm,n(a
c
i+m,j+n), (168)
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Figure 20: The corner pixels are sampled only once, while the center pixel is sampled nine times.

Figure 21: Max pooling

where ap stands for the activation/output value of the neuron in the pooling layer, ac stands for the
activation/output value of the neuron in the convolutional layer, m and n scan through the selected
region in the convolutional layer.

Average pooling As suggested by its name, the values of the neurons in the average pooling layers
are taken to be the average of the neurons in the selected regions from the convolutional layers.

Namely,
apij =

1

N

∑
m=0

∑
n=0

aci+m,j+n, (169)

where N is the total number of neurons in the selected region.

L2 pooling The values of the neurons in the L2 pooling layers are taken to be the L2 norm of the
neurons from the selected region in the convolutional layer.

Namely,

apij =

√∑
m=0

∑
n=0(a

c
i+m,j+n)

2

n
, (170)

where n is the total number of neurons in the selected region.

There are some resources saying that pooling preserves the symmetry invariance properties, find more
about it and add them here.
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5.2.5 Flatten layer

Flatten layer is used to turn the two dimensional pooling layer into a one dimensional vector, to be
fully connected with the neurons of the next layer.

5.2.6 Fully connected layer

Here we go back to the classical fully connected neural networks. Usually by now the features of the
image have been fully extracted and the size of layers have been greatly reduced, so that we can train
fully connected layers without too much efforts.

5.2.7 LeNet and AlexNet

LeNet[3] was proposed by Yann LeCun et al. in 1998. It used back propagation to train the parameters,
and outperformed all existing models back then on classifying hand written digits. LeNet is one of the
very important landmarks on the way to better CNN models.

Figure 22: Structure of LeNet. Cx stands for convolutional layers, Sx stands for sub-sampling layers,
or pooling layers.

Input layer LeNet has in total 7 layers (not counting the input layer). The input size is set to be
32× 32, which is larger than the size of images from the training set. Padding is used to prevent loss
of information at the edges and corners for images of size smaller than 32× 32.

C1 layer The first layer of convolution C1 selects a receptive field of size 5× 5, and a stride of 1, so
the size of the feature map is 32− 5 + 1 = 28. A total of 6 feature maps are extracted, so the number
of parameters in the first convolutional layer is 5× 5× 6 + 6 = 156. The activation function is

S2 layer The pooling layer S2 selects non-overlapping neighbourhoods of size 2 × 2, and each layer
is connected to the corresponding C1 layer. Then the neurons are summed in the neighbourhood,
multiplied with a trainable weight, plus a trainable bias, then passed through a sigmoid function.
There are in total 6× 2 = 12 trainable parameters in this layer.

C3 layer The connection between C3 and S2 is a bit complicated. See Fig.(23). Each layer in C3

are connected differently to S2. The first six layers of C3 are connected to contiguous three layers of
S2, and the receptive fields in each layer in S2 have the same positions and sizes (5× 5). The weights
are different for each receptive field in each layer in S2. Layer 6− 11 are connected to four contiguous
layers in S2, and the last four layers in C3 are connected to S2 in different ways. So the total number
of parameters of C3 is

5× 5× 3× 6 + 6 + 5× 5× 4× 9 + 9 + 5× 5× 6× 1 + 1 = 1516. (171)

S4 layer The pooling layer S4 selects non-overlapping neighbourhoods of size 2 × 2, and each layer
is connected to the corresponding C3 layer. The values are determined in the same way as S2. There
are in total 16× 2 = 32 trainable parameters in this layer.
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Figure 23: Connections of S2 and C3 in LeNet. The left column contains the indices of S2, and the
upper row contains the indices of C3. X stands for the two layers are connected.

C5 layer C5 selects a 5× 5 receptive field from ALL 16 layers (so it is a full connection) in S4, and
extracts in total 120 feature maps. Since S4 itself is of size 5× 5, so C5 is one dimensional. There are
in total 5× 5× 16× 120 + 120 = 48120 trainable parameters in C5.

F6 layer It is a one dimensional network with 84 neurons fully connected with C5. There are in total
120× 84 + 84 = 10164 trainable parameters.

Output layer The output layer uses something special, I would suggest reading the original paper.
There are just too many details to cover in this handbook...

LeNet works pretty well on MNIST, but when we have many outputs, say, 1000 outputs, then the
training for the fully connected networks near the output gets very expensive. And we need alternative
networks for such complex classification tasks.

ALEXNET!!

I will add more content about alexnet in the future...LeNet already took many more hours, which I
did not expect.. have to go on for other chapters..

There are several key factors making AlexNet, a deeper and larger CNN than LeNet, possible:

• Dropout allows the design of much more deeper networks. It turns out that not only the reg-
ularization of the model parameters are important, the regularization of the network structure
itself is also very important.

• ReLU was introduced to ameliorate the vanishing gradient problem, because you have half a
space where the gradient is constant and stable.

• Max pooling makes the model invariant to small translations, because max pooling will still
select the key feature even if you move it a little bit, unlike average pooling where the pooling
layer is responsive to every change in the convolutional layer.

5.2.8 The advantage of using CNN

In the field of image recognition, there are training tasks where the size of the training set is of the
order of millions of images. To have a fully connected neural network capable of learning such large
number of images, a huge amount of parameter is required. Yet, we have seen before that deep neural
networks are inherited with the problem of unstable gradient, making such training tasks formidable.

On the other hand, sharing weights and biases in CNN greatly reduces the number of parameters, and
at the same time capturing the key properties to learn. For an image of 256× 256 pixels, suppose the
receptive field is of size 8×8 and we extract 20 feature map, then for CNN we need 8×8×20+20 = 1300
parameters. In contrast, for a fully connected NN, even if we use a hidden layer of only 30 neurons,
we have a daunting number of 256× 256× 30 + 30 = 1966110 parameters!

5.3 Back propagation in CNN
The key to deriving back propagation algorithm is the chain rule, which is reflected in Fig.(24).

We have to know what is the starting point of the perturbation, e.g. zli, what are the routes, e.g. all
the neurons in the next layer zl+1

··· , and what is the end point, e.g. the cost function C. This is the
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logic to write
∂C

∂zli
=
∑
j

∂C

∂zl+1
j

∂zl+1
j

∂zli
. (172)

Layer by layer, we reach to the output layer, and put everything backward to get back propagation
algorithm.

This is the very same logic that brings us back propagation in CNN. However, due to the fact that
the activation function is not clearly defined for some layers in CNN, such as the pooling layer, it is
better and clearer to use ζ, as defined in Sec.(4.4.3), to represent back propagation, in order to avoid
messing up the notations. And only in this section, we call ζ the error . Keep in mind that activation
value is the actual value passed out from a neuron.

5.3.1 Error in fully connected layers

Neurons in fully connected layers look like Fig.(24).

Figure 24: Neurons in fully connected layers. Note that using al, the activation, is equivalent to using
zl, since al = σ(zl).

So we have

ζli =
∂C

∂ali
(173)

=
∑
j

∂C

∂al+1
j

∂al+1
j

∂ali
(174)

=
∑
j

ζl+1
j ωl+1

ji σ′(zl+1
j ), (175)

where we have used al+1
j = σ(

∑
k ω

l+1
jk alk + bl+1

j ). The above equation can be written in matrix form

ζl = (ωl+1)T ζl+1 ∗ σ′(zl+1). (176)

For the output layer, we have

ζL =
∂C

∂aL
. (177)

From above we see that the back propagation for fully connected layers remain the same, which is of
course expected.

5.3.2 Error in pooling layers

Pooling layer is connected to flatten layer, which is the first layer in fully connected layers. The neurons
in flatten layers have same values as their counter-parts in the pooling layer, thus

ζpij = ζfmi+j , (178)

where i and j are indices of the pixel in the pooling layer, counted from 0. m is the number of columns
in the pooling layer, namely the size of the pooling layer is supposed to be m× n. The superscript p
denotes the pooling layer, and f denotes the flatten layer.
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5.3.3 Error in convolutional layers

The value of errors in the convolutional layer depends on how it is connected to the pooling layer.

Figure 25: Connection between the convolutional layer and the pooling layer.

Max pooling For max pooling, only the maximum value in the selected neighbourhood is passed to
the pooling layer

apij = Maxm,n(a
c
i+m,j+n), (179)

where m and n scan through the selected neighbourhood in the convolutional layer.

As a result, making changes to minor values causes no change to the cost function, so we have

ζci+m,j+n =

{
ζpij if i+m, j + n the indices for local maximum
0 if i+m, j + n not the indices for local maximum

. (180)

Average pooling In average pooling, we have

apij =
1

N

∑
m=0

∑
n=0

aci+m,j+n, (181)

where N is the total number of neurons in the selected region.

So we have

ζci+m,j+n =
∂C

∂aci+m,j+n

(182)

=
∂C

∂apij

∂apij
∂aci+m,j+n

(183)

=
1

N
ζpij . (184)

So for average pooling, the error in the pooling layer is equally distributed to all the neurons in the
selected region.

5.3.4 Error propagation through the convolutional layer

The convolution operation can be represented as

acij = σ(zcij) = σ

(
bc +

∑
m=0

∑
n=0

ωc
m,nxi+m,j+n

)
, (185)

where the superscript c stands for convolution layers, zcij is the i, j-th weighted input, m,n are indices
for the local receptive field, note that the counting starts from 0. Note that for each feature map we
only have 1 bias. Namely b is optimized along with the specific kernel we used. Note that here we take
the default stride = 1.

The flow of message can be represented in Fig.(26).
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Figure 26: Message passing through the convolutional layer

To update the parameters ωc
m,n and bc, we have

∂C

∂ωc
m,n

=
∑
i

∑
j

∂C

∂acij

∂acij
∂ωc

m,n

(186)

=
∑
i

∑
j

ζcij
∂acij
∂ωc

m,n

(187)

=
∑
i

∑
j

ζcijσ
′(zcij) xi+m,j+n (188)

=
∑
i

∑
j

δcij xi+m,j+n, (189)

which is nothing but
∂C

∂ωc
= conv(X, δc), (190)

where X is the local receptive field, it is of the same size as the kernel, and its indices, which determine
the local receptive field to use, depend on the indices m,n of ωc

m,n, as explicitly shown in Eq.(189).
Here we use δc instead of ζc for convenience, but always keep in mind that these two are equivalent.

∂C

∂bc
=
∑
i

∑
j

∂C

∂acij

∂acij
∂bc

(191)

=
∑
i

∑
j

∂C

∂acij
σ′(zcij) (192)

=
∑
i

∑
j

ζcijσ
′(zcij) (193)

=
∑
i

∑
j

δcij , (194)

which is nothing but
∂C

∂bc
= sum(δc). (195)

Yeah we successfully find ∂C/∂ω and ∂C/∂b in CNN! But Can we call this an end?
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5.3.5 Keep going backward!

Now, if our CNN is very simple and do the convolution only once, the above sub-section would have
been the end of the story. But in practice, CNN has several convolutional layers, and the error has
to keep going backward after passing through the convolutional layer for the first time! In this case,
the input xij in Fig.(26) would be the activation value from the previous layer, namely from the last
pooling layer. We will continue using xij here to represent the input/activation from the layer before
the convolutional layer, feel free to remind yourself that x could the the activation ap.

Now we have to calculate ∂C/∂x to propagate the error backward. We will use the simple example in
Fig.(27) to reveal the equations.

Figure 27: This figure is the same as Fig.(18).

ζ00 =
∂C

∂x00
(196)

=
∑
i

∑
j

∂C

∂zcij

∂zcij
∂x00

(197)

= δc00ω00, (198)

where we have used zc instead of ac for convenience. Similarly we have

ζ01 = δc00ω01 + δc01ω00 (199)
ζ02 = δc01ω01 (200)
ζ10 = δc00ω10 + δc10ω00 (201)
ζ11 = δc00ω11 + δc01ω10 + δc10ω01 + δc11ω00 (202)
ζ12 = δc01ω11 + δc11ω01 (203)
ζ20 = δc10ω10 (204)
ζ21 = δc10ω11 + δc11ω10 (205)
ζ22 = δc11ω11 (206)

which turns out to be a padded δc convoluted with a 180◦ rotated kernel. Note that a 180◦ rotation is
not a transpose! See Fig.(28). So we have

ζ = conv( Padded(δc), Rotated(K) ), (207)

where K stands for the kernel.

5.3.6 Summary

We remind ourselves about the parameters to optimize:
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Figure 28: Error in the pooling layer before the convolutional layer

• Weights and biases in fully connected layers

• Weights (Kernel) and the bias for each feature map

• Any other trainable parameters related to specific structures of the CNN

Now let us go backward through the CNN!

Output layer: ζL =
∂C

∂aL
(208)

Fully connected layers: ζl = (ωl+1)T ζl+1 ∗ σ′(zl+1) (209)

Update weights: ∂C

∂ωl
= δl(al−1)T (210)

Update biases: ∂C

∂bl
= δl (211)

Average Pooling layer: ζpij = ζfmi+j (212)

Convolutional layer: ζci+m,j+n =
1

N
ζpij (213)

Update weights: ∂C

∂ωc
= conv(X, δc) (214)

Update bias: ∂C

∂bc
= sum(δc) (215)

Pooling layer: ζ = conv( Padded(δc), Rotated(K) ) (216)
Convolutional layer: · · · = · · · (217)

where δ can be easily obtained by δ = ζ ∗ σ′(z).

6 PyTorch
The content of this section is based on the tutorial https://www.learnpytorch.io/.

6.1 Fundamentals
import torch

print(torch.__version__)

# Scalar

scalar = torch.tensor(3)
print(scalar.ndim)
print(scalar.shape)

# Get the Python number within a tensor (only works with one-element tensors)
scalar.item()

41

https://www.learnpytorch.io/


# Vector

vector = torch.tensor([3,4])
print(vector.ndim)
print(vector.shape)

In the cotext of machine learning, we usually name scalars and vectors in lower cases, and matrices
and tensors in upper cases.
# MATRIX

MATRIX = torch.tensor([[1,2],
[3,4]])

print(MATRIX.ndim)
print(MATRIX.shape)

# Tensor

TENSOR = torch.tensor([[[1, 2, 3],
[3, 6, 9],
[2, 4, 5]]])

print(TENSOR.ndim)
print(TENSOR.shape)

# Random tensor

rand_tensor = torch.rand(size=(3,4))
print(rand_tensor.ndim, rand_tensor.dtype)

# Zeros and ones

zeros = torch.zeros(size=(3,4))
ones = torch.ones(size=(3,4))

# Range

zero_to_ten = torch.arange(0,11)
zero_to_ten = torch.arange(start=0,end=11,step=1)

# Tensor-like

ten_zeros = torch.zeros_like(input=zero_to_ten)

# Default datatype for tensors is float32

float_32_tensor = torch.tensor([3.0, 6.0, 9.0],
dtype=None, # defaults to None, which is torch.float32 or whatever datatype is passed
device=None, # defaults to None, or 'cpu', 'cuda' etc.
requires_grad=False) # if True, operations performed on the tensor are recorded.

# Getting tensor attributes

print(tensor.dtype)
print(tensor.shape) # = tensor.size()
print(tensor.device)

# Change the dtype of a tensor

float_16_tensor = float_32_tensor.type(torch.float16)

# Tensor multiplication *

float_16_tensor * float_32_tensor
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Note that the above line actually gives no error, but just in case, always keep the dtypes the same,
since they might give an error. And the operation * is not a true matrix multiplication, because * is
done element-wise.

Tensor operations There are in general five operations for PyTorch tensors:

• Addition

• Subtraction

• Multiplication, * (element-wise), sequence does not matter

• Division

• Matrix multiplication, @ (or dot product), sequence matters!
# Tensor operations

tensor = torch.rand(size=(3,4))

tensor + 10 # element-wise
torch.add(tensor, 10) # element-wise

tensor * 10 # element-wise
torch.mul(tensor, 10) # element-wise

tensor * tensor # also element-wise
torch.mul(tensor, tensor) # element-wise

tensor @ tensor # Matrix multiplication
torch.matmul(tensor, tensor) # Matrix multiplication
torch.mm(tensor, tensor) # alias for tensor.matmul()

Note that before we perform a matrix multiplication, we must make sure the inner dimensions of
those two matrices match, @ or torch.matmul will not automatically transpose the matrix for
us. We have to transpose the matrix by ourselves.
# Transpose a tensor

a = torch.rand(3,4)

b = torch.transpose(a,0,1)
b = torch.t(a)
b = a.t()
b = a.T

torch.transpose(a,0,1) is equivalent to torch.transpose(a,1,0). The sequence of the latter two
numbers does not matter, as they specify the two dimensions that will be switched.

torch.t(a) is equivalent to a.t(), the dimension of the input tensor in this case should be ≤ 2,
because by default torch.t() is the short for torch.transpose(input,0,1).

a.T gives the same output as a.t() for tensor.ndim <=2. It is just that a.T could be applied to
tensors with arbitrary dimensions and reverse the dimensions.

The transpose of a vector is meaningless in PyTorch.
# Tensor aggregation (to its min, max, mean, sum, etc.)

a = torch.arange(0,100,10)

torch.min(a)
a.min()

torch.max(a)
a.max()

torch.mean(a.type(torch.float32))
a.type(torch.float32).mean()
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torch.sum(a)
a.sum()

# Finding the positional min, max, etc.
# It returns the index of that position corresponding to that value of the tensor

torch.argmin(a)
a.argmin()

torch.argmax(a)
a.argmax()

# Reshape a tensor
# Note that the new shape should be compatible with the old shape

a = torch.arange(1,11)
a_reshaped = a.reshape(2,5)

# Change the view of a tensor

a_view = a.view(2,5)

# Note that a_view and a share exactly the same memory
# Any changes made to a_view will also reflect on a

# Stack tensors

a_stacked = torch.stack([a,a,a], dim=0)

# Squeeze a tensor
# The returned tensor is a VIEW of the original tensor

a_squeezed = torch.squeeze(a) # Remove all dims = 1
a_squeezed = a.squeeze() # Remove all dims = 1
a_squeezed = a.squeeze(dim=0) # Remove the first dimension if it is 1
a_squeezed = a.squeeze(dim=1) # Remove the second dimension if it is 1

# Unsqueeze a tensor
# The returned tensor is a VIEW of the original tensor

a_unsqueezed = a.unsqueeze(dim=0) # Add dim = 1 at the first dimension
a_unsqueezed = a.unsqueeze(dim=1) # Add dim = 1 at the second dimension

# Permute a tensor
# Returns a view of the original tensor with its dimensions permuted

a = torch.rand(size=(224,224,3))
a_permuted = a.permute(2,0,1) # a_permuted.shape = [3, 224, 224]

# Changing between PyTorch and NumPy

import torch
import numpy as np

array = np.arange(1,11)
tensor = torch.from_numpy(array)
# Warning: the default dtype in NumPy is float64
# While the default dtype in PyTorch is float32
# This would be better: tensor = torch.from_numpy(array).type(torch.float32)

tensor = torch.arange(1,11)
array = tensor.numpy()
# Warning: In this case the dtype of array would be float32

tensor_grad = torch.rand(2,2,requires_grad=Ture)

44



array_grad = tensor_grad.detach().numpy()
# Use Tensor.detach().numpy() to convert tensors with grad to numpy

# The above arrays and tensors DO NOT share the same memory

# Reproducible randomness
# Note that torch.manual_seed() only works for one cell

torch.manual_seed(1998)
a = torch.rand(3,4)

torch.manual_seed(1998)
b = torch.rand(3,4)

print(a == b) # Return a tensor of True

# Device agnostic code

device = 'cuda' if torch.cuda.is_available() else 'cpu'

a = torch.rand(3,4)
a_deviced = a.to(device)

a_to_numpy = a_deviced.numpy() # Will throw an error if on cuda
a_to_numpy = a_deviced.cpu().numpy() # Works!
# This is an example of device error

6.2 A simple linear model
Here we will demonstrate the workflow by fitting to a very simple linear model.
import torch
from torch import nn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

# Prepare the dataset

weight = 0.7
bias = 0.3

X = torch.arange(0, 1, 0.02).unsqueeze(dim=1)
y = weight*X + bias

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

# Create a linear regression model
class LinearRegressionModel(nn.Module):

def __init__(self):
super().__init__()

# Initialize model parameters
self.weight = nn.Parameter(torch.randn(1, # or size=[1]

dtype=torch.float32,
requires_grad=True))

self.bias = nn.Parameter(torch.randn(1, # size
dtype=torch.float32,
requires_grad=True))

def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.weight*x + self.bias

The above model is a very simple linear regression model built using PyTorch. Here are several things
to keep in mind:
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• Every model built using PyTorch should inherit from the nn.Module class, which contains the
building blocks for ML models.

• The initial parameters are random parameters. Here we are initializing w.r.t. the weight and
bias we defined before, it could also be an entire layer, etc.

• The nn.Parameter class is a subclass of torch.Tensor that has a very special property when
used with nn.Module: when they’re assigned as nn.Module attributes, e.g. here self.weight,
they are automatically added to the list of its parameters, and will appear e.g. in parameters()
iterator, see the next code block.

• Any subclass of nn.Module needs to overwrite the forward() method, which defines the compu-
tation performed at every call.

And x : torch.Tensor indicates the datatype of x, - > torch.Tensor indicates the output datatype
of this function.
# Equivalent and simpler way of defining a linear model

class LinearRegressionModel(nn.Module):
def __init__(self):

super().__init__()
# Also called: linear transform , probing layer, fully connected layer, dense layer

...
self.linear_layer = nn.Linear(in_features=1,

out_features=1)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear_layer(x)

# Check the parameters of the model

model = LinearRegressionModel()

print(list(model.parameters())) # Without name
print(model.state_dict()) # With name

# Device agnostic codes
device = 'cuda' if torch.cuda.is_available() else 'cpu'

print(next(model.parameters()).device)

model.to(device)

print(next(model.parameters()).device)

# All the data should also be on the same device as our model
# Otherwise it raises an error
X_train = X_train.to(device)
X_test = X_test.to(device)
y_train = y_train.to(device)
y_test = y_test.to(device)

# Make predictions with the model

with torch.inference_mode():
y_pred = model(X_test)

The reason why we use torch.inference_mode() here is that it will make our predictions faster,
especially for a large test set, by ignoring the track of things such as gradient. It is suggested to use
this when you are sure that your operation has nothing to do with autograd, e.g. model training.
# Set up the loss function and the optimizer

loss_fn = nn.L1Loss() # Here we use mean absolute error
optimizer = torch.optim.SGD(params=model.parameters(), # the parameters to optimize

lr=0.01) # lr is learning rate
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Learning rate is one of the most important hyperparameters. Parameter refers to the adjusted
parameters in the ML model, while hyperparameter refers to the parameters that are set by the ML
engineers.
epochs = 200

# Track different values
epoch_count = []
loss_values = []
test_loss_values = []

for epoch in range(epochs):
## Training
# Put the model in train mode, this is the default state
model.train()
# Forward propagation
y_pred = model(X_train)
# Calculate the loss
loss = loss_fn(y_pred, y_train)
# Clear the gradient values from previous steps
optimizer.zero_grad()
# Calculate the gradient of the loss function w.r.t. the parameters using backprop
loss.backward()
# Update the parameters
optimizer.step()

## Testing
# Evaluate the model at some points
if epoch%10 == 0:

# Turn off the settings not needed for evaluation/testing (dropout/batchnorm layers)
model.eval()
with torch.inference_mode(): # In outdated codes we may use torch.no_grad()

# Forward propagation
test_pred = model(X_test)
# Calculate the test loss
test_loss = loss_fn(test_pred, y_test)

# Append values to list
epoch_count.append(epoch)
loss_values.append(loss.detach().numpy())
test_loss_values.append(test_loss.detach().numpy())
# Print informaiton
print(f'Epoch: {epoch} | Train loss: {loss} | Test loss: {test_loss}')
print(model.state_dict())

It is a good habit to call model.train() when you start the training part, and call model.eval()
when you start the evaluation/testing part.
# Plot the learning curve

fig, ax = plt.subplots()

ax.plot(epoch_count, loss_values, label='Train loss')
ax.plot(epoch_count, test_loss_values, label='Test loss')
ax.set_title('Learning curve')
ax.set_xlabel('Epochs')
ax.set_ylabel('Loss')
ax.legend()

fig.tight_layout()
fig.show()
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Figure 29: Learning curve

# Save the model
# Don't forget the file name (*.pt or *.pth) in PATH

PATH = '/content/drive/MyDrive/Colab_Notebooks/models/model_0.pt'
torch.save(obj=model.state_dict(), f=PATH)

# Load the model

new_model = LinearRegressionModel()
print(new_model.state_dict())

new_model.load_state_dict(torch.load(f=PATH))
print(new_model.state_dict())

# Make predictions with the new model
# Don't forget .eval() and .inference_mode()

new_model.eval()
with torch.inference_mode():

new_preds = new_model(X_test)

6.3 Binary classification neural networks
# Load classification data
# Note that here data type is numpy.array

from sklearn.datasets import make_circles

n_samples = 1000

X, t = make_circles(n_samples,
noise=0.03,
random_state=42)

print(f'Input shape: {X.shape}\n')
print(f'Output shape: {t.shape}\n')
print(t[:5])

Input shape: (1000, 2)

Output shape: (1000,)

[1 1 1 1 0]
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Figure 30: Architecture of classification neural networks

# Pandas comes in handy to deal with data

import pandas as pd

circles = pd.DataFrame({'x1': X[:,0],
'x2': X[:,1],
'labels': t})

circles.head(5)

# Visualize the data set

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.scatter(circles['x1'],

circles['x2'],
c=t,
cmap=plt.cm.RdYlBu)
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# Turn data into tensors

import torch

X = torch.from_numpy(X).type(torch.float32)
t = torch.from_numpy(t).type(torch.float32)

# Split the data set

from sklearn.model_selection import train_test_split

X_train, X_test, t_train, t_test = train_test_split(X,t,
test_size=0.2,
random_state=42)

# Build a NN model

from torch import nn

class ClassificationNN(nn.Module):
def __init__(self):

super().__init__()
self.linear_1 = nn.Linear(in_features=2,

out_features=8)
self.linear_2 = nn.Linear(in_features=8,

out_features=1)

def forward(self,x):
return self.linear_2(self.linear_1(x))

model = ClassificationNN()

# Equivalent way of creating such a model

model = nn.Sequential(nn.Linear(in_features=2, out_features=8),
nn.Linear(in_features=8, out_features=1))

# Equivalent way of creating such a model

class ClassificationNN_2(nn.Module):
def __init__(self):

super().__init__()
self.two_linear_layers = nn.Sequential(nn.Linear(in_features=2, out_features=8),

nn.Linear(in_features=8, out_features=1))

def forward(self, x):
return self.two_linear_layers(x)

• Note that here we just built a 2-layer neural network with 1 hidden layer, which has 8 hidden
neurons. self.linear_1 corresponds to the hidden layer, and self.linear_2 corresponds to
the output layer.
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• Note that the number of input neurons should match the number of input features, and the
number of output neurons should match the number of output features.

• Note that within the NN, the in_features of the hidden layer should match the out_features
of the previous layer.

• Note that there is no activation function applied in any of these layers.

• The raw outputs of the above model are called logits. The logit of a probability p is the input
value x to a sigmoid function which yields p.

p = σ(x) =
1

1 + e−x
(218)

logit: x = σ−1(p) = ln p

1− p
(219)

They will be converted to prediction probabilities later on by applying sigmoid activation (or
softmax for multi-classification), then to prediction labels by rounding the prediction probabilities
(or argmax for multi-classification).

• logits (raw output) -> prediction probabilities -> prediction labels
# Set up loss function and optimizer

loss_fn = nn.BCEWithLogitsLoss()

optimizer = torch.optim.SGD(params=model.parameters(),
lr=0.1)

The optimal cost function to use is problem-specific.

• For regression problems, you might want to use MSE or MAE.

• For classification problems, you might want to use cross-entropy.

The difference between the BCEWithLogitsLoss and BCELoss is that, the former one expects logits
as its inputs, namely the NN output without the activation function, while the latter one expects
probabilities as its inputs. So nn.BCEWithLogitsLoss( y_logits, y_train )=nn.BCELoss( torch
.sigmoid(y_logits), y_train )

# Build the training loop

from sklearn.metrics import accuracy_score

torch.manual_seed(42)

epochs = 500

for epoch in range(epochs):
model.train()

# we use squeeze() here to unify the shapes
y_logits = model(X_train).squeeze()
# Note that the loss function is BCEWithLogitsLoss()
loss = loss_fn(y_logits, t_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()

# Testing
if epoch%10 == 0:

model.eval()
with torch.inference_mode():

y_test_logits = model(X_test).squeeze()
y_test_labels = torch.round(torch.sigmoid(y_test_logits))
test_loss = loss_fn(y_test_logits, t_test)

# Note the sequence of input values
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accuracy = accuracy_score(y_true=t_test,
y_pred=y_test_labels)

print(f'Epoch: {epoch} | Test loss: {test_loss} | Test accuracy: {100*accuracy}%')

...
Epoch: 230 | Test loss: 0.6946195363998413 | Test accuracy: 46.0%
Epoch: 240 | Test loss: 0.6946261525154114 | Test accuracy: 46.0%
...
Epoch: 460 | Test loss: 0.6946765184402466 | Test accuracy: 46.0%
Epoch: 470 | Test loss: 0.6946769952774048 | Test accuracy: 46.0%
Epoch: 480 | Test loss: 0.6946772933006287 | Test accuracy: 46.0%
Epoch: 490 | Test loss: 0.6946775913238525 | Test accuracy: 46.0%

Hmmm, why is that? Well, in the original tutorial, there is a very good visualization: https://www.
learnpytorch.io/02_pytorch_classification/#5-improving-a-model-from-a-model-perspective.
Deep down the reason is that the previous model we built has no non-linear activation functions (except
for the output layer), so it is not possible for it to fit a circle!

So let us now start over to build a non-linear model!
class ClassificationNN_non_linear(nn.Module):

def __init__(self):
super().__init__()
self.linear_1 = nn.Linear(in_features=2, out_features=8)
self.linear_2 = nn.Linear(in_features=8, out_features=1)
self.relu = nn.ReLU()

def forward(self, x):
return self.linear_2(self.relu(self.linear_1(x)))

model = ClassificationNN_non_linear()

loss_fn = nn.BCEWithLogitsLoss()
optimizer = torch.optim.SGD(params=model.parameters(),

lr=0.2)

from sklearn.metrics import accuracy_score

epochs = 500

for epoch in range(epochs):
model.train()
y_logits = model(X_train).squeeze()
# Note that the loss function is BCEWithLogitsLoss()
loss = loss_fn(y_logits, t_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()

if epoch%10 == 0:
model.eval()
with torch.inference_mode():

y_test_logits = model(X_test).squeeze()
y_test_labels = torch.round(torch.sigmoid(y_test_logits))
test_loss = loss_fn(y_test_logits,t_test)
test_accuracy = accuracy_score(y_true=t_test, y_pred=y_test_labels)
print(f'Epoch: {epoch} | Test loss: {test_loss} | Test accuracy: {100*

test_accuracy}%')

Epoch: 0 | Test loss: 0.689878523349762 | Test accuracy: 53.0%
Epoch: 10 | Test loss: 0.6865444779396057 | Test accuracy: 54.0%
Epoch: 20 | Test loss: 0.685676634311676 | Test accuracy: 54.50000000000001%
Epoch: 30 | Test loss: 0.6850526332855225 | Test accuracy: 54.50000000000001%
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Epoch: 40 | Test loss: 0.6844508647918701 | Test accuracy: 55.00000000000001%
Epoch: 50 | Test loss: 0.6838477253913879 | Test accuracy: 56.00000000000001%
Epoch: 60 | Test loss: 0.6832348704338074 | Test accuracy: 55.50000000000001%
Epoch: 70 | Test loss: 0.682598888874054 | Test accuracy: 55.00000000000001%
Epoch: 80 | Test loss: 0.6819336414337158 | Test accuracy: 56.00000000000001%
Epoch: 90 | Test loss: 0.6812419891357422 | Test accuracy: 56.49999999999999%
Epoch: 100 | Test loss: 0.6805312633514404 | Test accuracy: 55.50000000000001%
Epoch: 110 | Test loss: 0.6798207759857178 | Test accuracy: 55.50000000000001%
Epoch: 120 | Test loss: 0.6791056990623474 | Test accuracy: 55.50000000000001%
Epoch: 130 | Test loss: 0.6783709526062012 | Test accuracy: 56.00000000000001%
Epoch: 140 | Test loss: 0.6776062250137329 | Test accuracy: 55.50000000000001%
Epoch: 150 | Test loss: 0.6768156290054321 | Test accuracy: 55.50000000000001%
Epoch: 160 | Test loss: 0.6759982109069824 | Test accuracy: 55.50000000000001%
Epoch: 170 | Test loss: 0.6751616597175598 | Test accuracy: 56.49999999999999%
Epoch: 180 | Test loss: 0.6742920875549316 | Test accuracy: 58.5%
Epoch: 190 | Test loss: 0.6733829975128174 | Test accuracy: 59.5%
Epoch: 200 | Test loss: 0.6724340915679932 | Test accuracy: 61.5%
Epoch: 210 | Test loss: 0.6714396476745605 | Test accuracy: 64.5%
Epoch: 220 | Test loss: 0.6704716682434082 | Test accuracy: 65.0%
Epoch: 230 | Test loss: 0.6695387363433838 | Test accuracy: 66.5%
Epoch: 240 | Test loss: 0.668637216091156 | Test accuracy: 69.5%
...
Epoch: 460 | Test loss: 0.633186936378479 | Test accuracy: 84.5%
Epoch: 470 | Test loss: 0.6308820247650146 | Test accuracy: 85.0%
Epoch: 480 | Test loss: 0.6284880638122559 | Test accuracy: 87.5%
Epoch: 490 | Test loss: 0.626177191734314 | Test accuracy: 90.0%

It works!

What if we use y_labels to calculate the training loss ( in this case we use nn.BCELoss() )? Well,
in that case, the changing of weights may not lead to the change of the outputs (because the outputs
are rounded), so in this case the learning completely stops.

6.4 Multi-class classification neural networks
import torch
from torch import nn
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# Create the multi-class data

X_blob, t_blob = make_blobs(n_samples=1000,
n_features=2,
centers=4,
cluster_std=1.5,
random_state=42)

# Turn data into tensors

X_blob = torch.from_numpy(X_blob).type(torch.float32)

# Well, when calculating cross entropy loss, the dtype should be torch.long
t_blob = torch.from_numpy(t_blob).type(torch.long)

# Split into train and test

X_train, X_test, t_train, t_test = train_test_split(X_blob, t_blob, test_size=0.2,
random_state = 42)
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# Plot data

fig, ax = plt.subplots()
ax.scatter(X_blob[:,0], X_blob[:,1], c=t_blob, cmap=plt.cm.RdYlBu)

# Build a multi-class classification model

class MultiClassification(nn.Module):
def __init__(self, input_features, output_features, hidden_units=8):

super().__init__()
self.linear_layer_stack = nn.Sequential(

nn.Linear(in_features=input_features, out_features=hidden_units),
nn.ReLU(),
nn.Linear(in_features=hidden_units, out_features=hidden_units),
nn.ReLU(),
nn.Linear(in_features=hidden_units, out_features=output_features)

)

def forward(self, x):
return self.linear_layer_stack(x)

model = MultiClassification(input_features=X_blob.shape[1],
output_features=len(torch.unique(t_blob)),
hidden_units=8)

# Loss function and optimizer
# Note the difference from the binary classification problem
# We use cross entropy instead of binary cross entropy (BCE)

# Note that this loss function takes in logits for predictions
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(params=model.parameters(),

lr=0.1)

# Evaluate the model
# Note the difference from the binary classification problem
# We use softmax instead of sigmoid in the output layer

model.eval()
with torch.inference_mode():

y_logits = model(X_test)
y_probs = torch.softmax(y_logits, dim=1)
y_labels = torch.argmax(y_probs, dim=1)
print(y_probs[:5])
print(y_labels[:5])

tensor([[0.3169, 0.3244, 0.1405, 0.2182],
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[0.3336, 0.1432, 0.2026, 0.3206],
[0.3011, 0.1843, 0.2823, 0.2323],
[0.3078, 0.2766, 0.1836, 0.2320],
[0.3719, 0.1286, 0.1532, 0.3463]])

tensor([1, 0, 0, 0, 0])

torch.manual_seed(42)

epochs = 100

for epoch in range(epochs):
model.train()

y_logits = model(X_train)
# Do not forget dim=1
y_probs = torch.softmax(y_logits, dim=1)
y_labels = torch.argmax(y_probs, dim=1)

loss = loss_fn(y_logits, t_train)

optimizer.zero_grad()
loss.backward()
optimizer.step()

if epoch%10 == 0:
model.eval()
with torch.inference_mode():

y_test_logits = model(X_test)
y_test_probs = torch.softmax(y_test_logits, dim=1)
y_test_labels = torch.argmax(y_test_probs, dim=1)

test_loss = loss_fn(y_test_logits, t_test)
accuracy = accuracy_score(y_true=t_test,

y_pred=y_test_labels)

print(f"Epoch: {epoch} | Loss: {loss:.4f} | Test loss: {test_loss:4f} | Test
accuracy: {accuracy}")

Epoch: 0 | Loss: 1.1588 | Test loss: 1.075542 | Test accuracy: 0.48
Epoch: 10 | Loss: 0.6448 | Test loss: 0.660687 | Test accuracy: 0.975
Epoch: 20 | Loss: 0.4254 | Test loss: 0.430741 | Test accuracy: 1.0
Epoch: 30 | Loss: 0.2529 | Test loss: 0.245076 | Test accuracy: 0.995
Epoch: 40 | Loss: 0.1123 | Test loss: 0.102285 | Test accuracy: 0.995
Epoch: 50 | Loss: 0.0663 | Test loss: 0.058475 | Test accuracy: 0.995
Epoch: 60 | Loss: 0.0507 | Test loss: 0.042932 | Test accuracy: 0.995
Epoch: 70 | Loss: 0.0430 | Test loss: 0.034910 | Test accuracy: 0.995
Epoch: 80 | Loss: 0.0384 | Test loss: 0.029878 | Test accuracy: 0.995
Epoch: 90 | Loss: 0.0352 | Test loss: 0.026627 | Test accuracy: 0.995

# Make predictions with multi-class classification model

model.eval()
with torch.inference_mode():

y_logits = model(X_test)
y_probs = torch.softmax(y_logits, dim=1)
y_labels = torch.argmax(y_probs, dim=1)
print(y_labels[:5])
print(t_test[:5])

tensor([1, 3, 2, 1, 0])
tensor([1, 3, 2, 1, 0])

For this specific classification problem, the model still performs well even if we comment out nn.ReLU
(), namely remove the non-linearity. The reason is that the data we created are linearly separable,
and with four output neurons, the model ”draws” four different straight lines as the decision boundary.
But for the purpose of generality, it is still better to always add non-linearity.
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6.5 Gradients in PyTorch [IMPORTANT]
We will figure out the following things in this section:

• requires_grad

• x.grad, i.e. torch.Tensor.grad

• x.grad_fn, i.e. torch.Tensor.grad_fn

• leaf tensor

requires_grad This attribute tells PyTorch whether or not to track the gradient of the tensor, i.e.
any mathematical operation on this tensor, so that the gradient of an output w.r.t. this tensor can be
easily calculated using back propagation. See this example.

x.grad Returns the gradient of a variable on which .backward() is applied w.r.t. x. If we did
not call .backward(), x.grad is None. x.grad only works for tensors that are leaf tensors. For
a non-leaf tensor y, y.grad only makes sense after we call y.retain_grad(), otherwise it gives a
warning. Future calls of .backward() will accumulate/add gradients on x.grad. See here for the
original documentation.

leaf tensor All tensors with requires_grad=False are leaf tensors. User-created tensors with
requires_grad=True are leaf tensors. For a leaf tensor x, x.grad will only have actual values if x.
requires_grad=True. Otherwise it is None. The .grad attribute of all leaf tensors will be populated
after we call .backward(). Note that the value None is also considered as populated.

x.grad_fn This attribute records from which function is the tensor created, under the condition that
requires_grad=True. This attribute facilitates the process of back propagation because it remembers
the derivative of the functions in the previous steps in the chain rule, as demonstrated later in the
example. Apparently, for leaf tensors, we always have x.grad_fn=None, because leaf tensors either are
created by the user with no previous PyTorch operation, or have requires_grad=False which do not
let PyTorch track the operations.

With the above introduced, we here show a easy example explaining those in detail and show how
PyTorch uses back propagation to calculate the gradients.
a = torch.rand(2,2,requires_grad=True)
print(a.grad_fn) # None
print(a.is_leaf) # True
print(a.grad) # None

b = a + 2 # tensor([[2.1163, 2.5686],[2.6716, 2.1990]], grad_fn=<AddBackward0 >)
print(b.is_leaf) # False
print(b.grad_fn) # <AddBackward0 object at 0x7fba0cf1d310 >

c = b*b*2
out = c.mean()
print(out.grad_fn) # <MeanBackward0 object at 0x7fba03a65880 >
out.backward() # IMPORTANT!
print(a.grad) # tensor([[2.1163, 2.5686],[2.6716, 2.1990]])

The back propagation works as follows, let’s take the derivative w.r.t. a11 for example

d (out)

d a11
=

d (c11 + c12 + c21 + c22)/4

d a11
(220)

=
1

4
(
d c11
d a11

+
d c12
d a11

+
d c21
d a11

+
d c22
d a11

) (221)

=
1

4
(
∂ c11
∂ b11

∂ b11
∂ a11

+
∂ c11
∂ b12

∂ b12
∂ a11

+ · · · (222)
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∂ c12
∂ b11

∂ b11
∂ a11

+
∂ c12
∂ b12

∂ b12
∂ a11

+ · · · (223)
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∂ b11

∂ b11
∂ a11

+
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∂ b12

∂ b12
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+ · · · (224)

∂ c22
∂ b11

∂ b11
∂ a11

+
∂ c22
∂ b12

∂ b12
∂ a11

+ · · · ) (225)

=
1

4

∂ c11
∂ b11

(226)

= b11, (227)

which agrees with the output of our codes above. Note that during this process, the operation that
.grad_fn records facilitates the calculations of all the partial derivatives, e.g. ∂c11/∂b11 = 4b11,
∂b11/∂a11 = 1, etc. It is because the complex mathematical operations consist of simple operations
such as Add, Mean, Sum, Power, etc, that we are able to decompose them step by step using chain
rule and calculate the gradients of complex functions such as neural network.

Now let’s make some variations to the above code and see what happens.

• call b.grad → None and reports a warning. Because b is originally a non-leaf tensor, we have to
call b.retain_grad() before calling out.backward(). The result is as expected, ∂(out)/∂bij =
bij .

• change a.requires_grad=False → out.backward() reports a bug: element 0 of tensors does
not require grad and does not have a grad_fn.

When I ran the third code block above again and again I found something interesting, that instead
of giving the correct results as executed for the first time, a.grad accumulates the gradient values
each time. This has something to do with the internal implementation of PyTorch, and that is why
we have to call optimizer.zero_grad() function in each epoch of the neural network.

6.6 Modes in PyTorch
• model.train()

• model.eval()

• with torch.no_grad()

• with torch.inference_mode()

with torch.inference_mode() Here is a simple example:
import torch
from torch import nn

# Define a simple input
X = torch.arange(0,1,0.2).unsqueeze(dim=1)

# Define a simplt linear model
model = nn.Sequential(nn.Linear(in_features=1,out_features=1))

# Pred without inference mode
pred = model(X)
print(pred,'\n')

# Pred with inference model
with torch.inference_mode():

pred = model(X)
print(pred)

The output is of the above block is (Note the difference at grad_fn):
tensor([[0.2927],

[0.4554],
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[0.6181],
[0.7808],
[0.9435]], grad_fn=<AddmmBackward0>)

tensor([[0.2927],
[0.4554],
[0.6181],
[0.7808],
[0.9435]])

There is something going on with requires_grad in nn.Parameter() and torch.randn() and torch.infer-
ence_mode() and model.train() and model.eval() and torch.no_grad().

6.7 Miscellaneous

Figure 31: Choosing the loss function and the optimizer

7 Machine Learning Practical Tools
7.1 Use Pandas to load the datasets
The basic sentences are
import pandas as pd

df = pd.read_csv('path/to/file', header = None)

and
import pandas as pd

dic = {'col_1':[1,2,3],
'col_2':{4,5,6}}

df = pd.DataFrame(dic)

Note that file df here belongs to the class pandas.DataFrame. It is a special data format used in pandas.
Each column of DataFrame belongs to the class pandas.Series, which is another one-dimensional data
format used in pandas.

Here are some basic commands to show the information of DataFrame.
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df.columns It shows the names/labels of all the columns.

df.values It returns a numpy array version of DataFrame.

df.info It shows the information and content of this DataFrame.

df.head(n) It shows the first n rows of this DataFrame.

df['col_name'] It returns the indicated column as pandas.Series.

df.values[row_id, column_id] or df['col_name'][row_id] It returns the indicated element in
DataFrame.

df > 10 Doing this will return a DataFrame of the same shape where all the elements are booleans.
This operation is often used in df.where() and df.mask().

7.1.1 pandas.where()

The frequently used format is
df.where(cond = df < 90, other = 'A+')

Doing this will replace all the elements if not cond with other. This webpage gives the best examples:
Pandas where().

7.1.2 pandas.mask()

The frequently used format is
df.mask(cond = df >= 90, other = 'A+')

Doing this will replace all the elements if cond with other. This operation is the opposite of where().

7.1.3 pandas.repalce()

The frequently used format is
df.repalce(a,b)

and
map = {'a': 'b'}
df.repalce(map)

Basically, this operation replaces one element, which must be present in df, with another user-specified
element.

7.1.4 Example

So a basic example of using pandas to load the dataset and create the feature matrix and target vector
is as follows:
import pandas as pd

path = './datasets/iris/iris.data'

df = pd.read_csv(path, header=None)

features = df.drop([4],axis=1)

map = {'Iris-setosa':0, 'Iris-versicolor':1, 'Iris-virginica':2}
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b = df.replace(map)

targets = b[4]

8 Miscellaneous
8.1 Python
Dictionary There are two commonly used methods to define a dictionary, one is using the curly
braces:
MLB_team = {

'Colorado' : 'Rockies',
'Boston' : 'Red Sox',
'Minnesota': 'Twins',
'Milwaukee': 'Brewers',
'Seattle' : 'Mariners'}

Another one is using dict method:
MLB_team = dict(

Colorado='Rockies',
Boston='Red Sox',
Minnesota='Twins',
Milwaukee='Brewers',
Seattle='Mariners')

Noted that in the first method, the string-type key names have to be inside the quotation mark, yet
for dict method, the string-type key names can be directly defined.

Tuple Tuples are immutable! You can not change it!

Set A set can be created in the following two ways:
set_A = set('a','b','c')
set_B = {'a','b','c'}

Note that a set is a collection which is unordered, unchangeable, and unindexed, and it does not allow
duplicate terms, which means that set can not have two terms having the same value.

Dunder methods Dunder or magic methods in Python are the methods having two prefix and
suffix underscores in the method name. Dunder here means “Double Under (Underscores)”. These are
commonly used for operator overloading. Few examples for magic methods are: __init__, __add__,
__len__, __repr__ etc[4].

isinstance() This method is used to determine whether an object belongs to a certain class, e.g.
isinstance(<instance>,<class>). It returns True or False.

String formatting A good article: https://realpython.com/python-f-strings/

Cardinality A mathematical concept, which means the number of elements in a set.

Inheritance and composition Inheritance expresses the is a relationship, e.g. The derived class/-
subclass/child class is a type of the base class/parent class. Composition expresses the has a relation-
ship, e.g. A composite has a component.

Everything is python is an object. Everything is python is an object. Modules are objects, class
definitions and functions are objects, and of course, objects created from classes are objects too.
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dir() dir(<object>) returns all the members (properties and methods) of that object.

Python object class When we define a python class like this: class Dog(), in fact we are calling:
class Dog(object). Namely, the class we define inherits from the object class. But there is an
exception, that is the Exception class. When we want to define our own error message and raise it, it
has to be inherited from the BaseException class or Exception class.
class MyError(Exception):

pass

*args and **kwargs See this webpage.

Python decorator @ See this webpage.

Python function annotations See the webpages webpage 1, webpage 2, webpage 3.

8.2 Jupyter notebook
%%time Put %%time at the top of the cell, you will have the wall time of executing this cell in the
output.
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9 Selected Problems
1. Show that

E[xnxm] = µ2 + Inmσ2, (228)

where xn and xm denote data points sampled from a Gaussian distribution with mean µ and variance
σ2, and Inm satisfies Inm = 1 if n = m and Inm = 0 otherwise. And use the above result to prove

E[µML] = µ, (229)

E[σ2
ML] =

N − 1

N
σ2, (230)

where µML and σ2
ML denote the maximum-likely mean and variance of N independently and identically

distributed samples of x.
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